
2026/01/12 00:44 1/28 Kernelkompilation

Linux4Ever - https://looper.de/wiki/

Kernelkompilation

Nachfolgend soll die Möglichkeit beschrieben werden, einen anderen Kernel für das Android Custom
ROM zu bauen und zu flashen.

Nützliche Webseiten

Auf folgenden Webseiten wurden Informationen dazu gefunden:

https://wiki.ubuntuusers.de/Archiv/GNU_ARM-Toolchain/
https://forum.xda-developers.com/showthread.php?t=2073775
https://forum.xda-developers.com/android/software/guide-easy-kernel-building-tutorial-t358105
7
https://forum.xda-developers.com/chef-central/android/guide-how-to-build-android-kernel-t3654
336
https://forum.xda-developers.com/android/software-hacking/reference-how-to-compile-android-
kernel-t3627297

Voraussetzungen

Es wird ein DEBIAN-Linux-System vorausgesetzt, sowie eine Verbindung zum Internet, um Dateien
herunterzuladen. Es kann ein Minimalinstallation als Voraussetzung genutzt werden. Nachfolgend
werden alle Schritte in einer CHROOT-Umgebung durchgeführt.

Folgende Pakete müssen zusätzlich noch installiert werden:

~# apt install python libssl-dev build-essential libgmp3-dev libmpfr-dev
libx11-6 libx11-dev texinfo flex bison libmpc-dev \
libncurses5 libncurses5-dbg libncurses5-dev libncursesw5 libncursesw5-dbg
libncursesw5-dev zlibc git bc

Toolchain

Eine „Toolchain“ ist eine Art Werkzeugkiste, welche Programme beinhaltet, die für die Erstellung
des Kernels verwendet werden. Das bekannteste Toolchain kommt von Google selbst: NDK. Aber es
gibt auch andere, die zum Beispiel auf der Seite elinux.org kurz beschrieben werden.

https://wiki.ubuntuusers.de/Archiv/GNU_ARM-Toolchain/
https://forum.xda-developers.com/showthread.php?t=2073775
https://forum.xda-developers.com/android/software/guide-easy-kernel-building-tutorial-t3581057
https://forum.xda-developers.com/android/software/guide-easy-kernel-building-tutorial-t3581057
https://forum.xda-developers.com/chef-central/android/guide-how-to-build-android-kernel-t3654336
https://forum.xda-developers.com/chef-central/android/guide-how-to-build-android-kernel-t3654336
https://forum.xda-developers.com/android/software-hacking/reference-how-to-compile-android-kernel-t3627297
https://forum.xda-developers.com/android/software-hacking/reference-how-to-compile-android-kernel-t3627297
https://looper.de/wiki/doku.php?id=debian-linux:minimalinstallation
https://looper.de/wiki/doku.php?id=software:schroot#schroot
https://developer.android.com/tools/sdk/ndk/index.html
https://elinux.org/Toolchains

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

https://looper.de/wiki/ Printed on 2026/01/12 00:44

DEBIAN-Pakete

Das DEBIAN-System bringt selbst auch Toolchains mit, die über die Paketverwaltung installiert werden
können:

gcc-arm-linux-gnueabi (für ARM-Architekturen)
gcc-aarch64-linux-gnu (für ARM64-Architekturen)

Folgende Pakete werden bei der Installation von „gcc-arm-linux-gnueabi“ mit installiert:

binutils-arm-linux-gnueabi cpp-6-arm-linux-gnueabi cpp-arm-linux-gnueabi
gcc-6-arm-linux-gnueabi \
gcc-6-arm-linux-gnueabi-base gcc-6-cross-base gcc-arm-linux-gnueabi
libasan3-armel-cross libatomic1-armel-cross \
libc6-armel-cross libc6-dev-armel-cross libgcc-6-dev-armel-cross libgcc1-
armel-cross libgomp1-armel-cross \
libstdc++6-armel-cross libubsan0-armel-cross linux-libc-dev-armel-cross

Die Umgebungsvariable für den Cross-Kompiler wird dann wie folgt gesetzt:

CROSS_COMPILE="/usr/bin/arm-linux-gnueabi-"

Google NDK

Das Toolchain kann hier heruntergeladen werden.

Das heruntergeladene Archiv wird dann entpackt:

~$ cd toolchain
~$ unzip android-ndk-r17-linux-x86_64.zip
Archive: android-ndk-r17-linux-x86_64.zip
 creating: android-ndk-r17/
 creating: android-ndk-r17/toolchains/
 inflating: android-ndk-r17/toolchains/NOTICE-MIPS64
 creating: android-ndk-r17/toolchains/x86-4.9/
...
 inflating: android-ndk-r17/python-packages/fastboot/setup.py
 inflating: android-ndk-r17/CHANGELOG.md
 inflating: android-ndk-r17/ndk-build

https://developer.android.com/ndk/downloads/

2026/01/12 00:44 3/28 Kernelkompilation

Linux4Ever - https://looper.de/wiki/

Zur Kompilierung des Kernels wird aber nicht das komplette NDK benötigt. Deswegen kann das
Toolchain extra als „Standalone“-Variante installiert werden:

~$ cd android-ndk-r17
~$ build/tools/make-standalone-toolchain.sh --install-dir=../google-ndk-r17
HOST_OS=linux
HOST_EXE=
HOST_ARCH=x86_64
HOST_TAG=linux-x86_64
HOST_NUM_CPUS=8
BUILD_NUM_CPUS=16
Auto-config: --arch=arm
Toolchain installed to ../google-ndk-r17.
~$ cd ..

Das Verzeichnis „android-ndk-r17“ kann jetzt bei Bedarf auch wieder entfernt werden, da es nicht
mehr benötigt wird.

Das Toolchain kann wie folgt getestet werden:

~$ cd google-ndk-r17/bin
~$ echo "main(){}" | ./arm-linux-androideabi-gcc -x c -
~$ file a.out
a.out: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically
linked, interpreter /system/bin/linker, not stripped
~$ rm a.out

Die Umgebungsvariable für den Cross-Kompiler wird dann wie folgt gesetzt:

CROSS_COMPILE="$(pwd)/toolchain/google-ndk/bin/arm-linux-androideabi-"

Google Prebuilts

Das Toolchain kann hier heruntergeladen werden. Nachfolgend wird das Toolchain „arm-linux-
androideabi-4.9“ heruntergeladen.

Der Download erfolgt mit „git“:

~$ git clone
https://android.googlesource.com/platform/prebuilts/gcc/linux-x86/arm/arm-li
nux-androideabi-4.9

https://android.googlesource.com/platform/prebuilts/gcc/linux-x86/arm/

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

https://looper.de/wiki/ Printed on 2026/01/12 00:44

Klone nach 'arm-linux-androideabi-4.9' ...
remote: Sending approximately 262.98 MiB ...
remote: Counting objects: 396, done
remote: Total 2263 (delta 1060), reused 2263 (delta 1060)
Empfange Objekte: 100% (2263/2263), 262.98 MiB | 706.00 KiB/s, Fertig.
Löse Unterschiede auf: 100% (1060/1060), Fertig.

Die Umgebungsvariable für den Cross-Kompiler wird dann wie folgt gesetzt:

CROSS_COMPILE="$(pwd)/toolchain/arm-linux-androideabi-4.9/bin/arm-linux-
androideabi-"

GNU Arm Embedded Toolchain

Das Toolchain kann hier heruntergeladen werden.

Das heruntergeladene Archiv wird dann entpackt:

~$ tar xvfj gcc-arm-none-eabi-7-2017-q4-major-linux.tar.bz2
gcc-arm-none-eabi-7-2017-q4-major/
gcc-arm-none-eabi-7-2017-q4-major/lib/
gcc-arm-none-eabi-7-2017-q4-major/lib/libcc1.so.0.0.0
...
gcc-arm-none-eabi-7-2017-q4-major/bin/arm-none-eabi-cpp
gcc-arm-none-eabi-7-2017-q4-major/bin/arm-none-eabi-gcc-7.2.1
gcc-arm-none-eabi-7-2017-q4-major/bin/arm-none-eabi-nm

Zur Vereinfachung wird das neu erstellte Verzeichnis noch umbenannt:

~$ mv -v gcc-arm-none-eabi-7-2017-q4-major gnu-arm-7-2017-q4
'gcc-arm-none-eabi-7-2017-q4-major' -> 'gnu-arm-7-2017-q4'

Die Umgebungsvariable für den Cross-Kompiler wird dann wie folgt gesetzt:

CROSS_COMPILE="$(pwd)/toolchain/gnu-arm-7-2017-q4/bin/arm-none-eabi-"

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads

2026/01/12 00:44 5/28 Kernelkompilation

Linux4Ever - https://looper.de/wiki/

Nathanchance Prebuilt ARM

Dieses Toolchain kommt von xda-developers.com.

Der Download erfolgt über das Klonen:

git clone -b arm-gnu-7.x --depth=1
https://github.com/nathanchance/gcc-prebuilts nathanchance-prebuilt-arm

Die Umgebungsvariable für den Cross-Kompiler wird dann wie folgt gesetzt:

CROSS_COMPILE="$(pwd)/toolchain/nathanchance-prebuilt-arm/bin/arm-gnu-linux-
androideabi-"

Linaro ARM

Das Toolchain kann hier heruntergeladen werden.

Das heruntergeladene Archiv wird dann entpackt:

~$ tar xvfJ gcc-linaro-7.2.1-2017.11-x86_64_arm-linux-gnueabihf.tar.xz
gcc-linaro-7.2.1-2017.11-x86_64_arm-linux-gnueabihf/
gcc-linaro-7.2.1-2017.11-x86_64_arm-linux-gnueabihf/include/
gcc-linaro-7.2.1-2017.11-x86_64_arm-linux-gnueabihf/include/gdb/
...
gcc-linaro-7.2.1-2017.11-x86_64_arm-linux-gnueabihf/libexec/gcc/arm-linux-
gnueabihf/7.2.1/install-tools/fixincl
gcc-linaro-7.2.1-2017.11-x86_64_arm-linux-gnueabihf/libexec/gcc/arm-linux-
gnueabihf/7.2.1/install-tools/mkheaders
gcc-linaro-7.2.1-2017.11-x86_64_arm-linux-gnueabihf/gcc-
linaro-7.2.1-2017.11-linux-manifest.txt

Zur Vereinfachung wird das neu erstellte Verzeichnis noch umbenannt:

~$ mv -v gcc-linaro-7.2.1-2017.11-x86_64_arm-linux-gnueabihf linaro-arm
'gcc-linaro-7.2.1-2017.11-x86_64_arm-linux-gnueabihf' -> 'linaro-arm'

Das Toolchain kann wie folgt getestet werden:

https://forum.xda-developers.com/android/development/toolchains-gnu-linaro-5th-2017-t3606941
https://releases.linaro.org/components/toolchain/binaries/latest/arm-linux-gnueabihf/

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

https://looper.de/wiki/ Printed on 2026/01/12 00:44

~$ cd linaro-arm/bin
~$ echo "main(){}" | ./arm-linux-gnueabihf-gcc -x c -
<stdin>:1:1: warning: return type defaults to ‘int’ [-Wimplicit-int]
~$ file a.out
a.out: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically
linked, interpreter \
/lib/ld-linux-armhf.so.3, for GNU/Linux 3.2.0,
BuildID[sha1]=995639f16ef402f3cf87b3b2c59fedb3b0ba8db0, not stripped
~$ rm a.out

Die Umgebungsvariable für den Cross-Kompiler wird dann wie folgt gesetzt:

CROSS_COMPILE="$(pwd)/toolchain/linaro-arm/bin/arm-linux-gnueabihf-"

UBER Toolchain

Dieses Toolchain kommt von xda-developers.com. Die fertigen Archive liegen auf bitbucket.org.

Das gewünschte Archiv wird heruntergeladen:

~$ wget
https://bitbucket.org/matthewdalex/arm-linux-androideabi-4.9/get/0ed6f4e24a6
2.zip

Im nächsten Schritt muss entpackt werden:

~$ unzip 0ed6f4e24a62.zip && rm 0ed6f4e24a62.zip

Zur Vereinfachung wird das neu erstellte Verzeichnis noch umbenannt:

~$ mv -v matthewdalex-arm-linux-androideabi-4.9-0ed6f4e24a62 ubertc-arm
'matthewdalex-arm-linux-androideabi-4.9-0ed6f4e24a62' -> 'ubertc-arm'

Die Umgebungsvariable für den Cross-Kompiler wird dann wie folgt gesetzt:

CROSS_COMPILE="$(pwd)/toolchain/ubertc-arm/bin/arm-linux-androideabi-"

https://forum.xda-developers.com/android/software/toolchain-uber-toolchains-t3527997
https://bitbucket.org/matthewdalex/

2026/01/12 00:44 7/28 Kernelkompilation

Linux4Ever - https://looper.de/wiki/

Linaro AARCH64

Das Toolchain kann hier heruntergeladen werden. Es kann ausschließlich für 64-Bit-Architekturen
verwendet werden.

Das heruntergeladene Archiv wird dann entpackt:

~$ tar xvfJ gcc-linaro-5.5.0-2017.10-x86_64_aarch64-linux-gnu.tar.xz
gcc-linaro-5.5.0-2017.10-x86_64_aarch64-linux-gnu/
gcc-linaro-5.5.0-2017.10-x86_64_aarch64-linux-gnu/include/
gcc-linaro-5.5.0-2017.10-x86_64_aarch64-linux-gnu/include/gdb/
...
gcc-linaro-5.5.0-2017.10-x86_64_aarch64-linux-gnu/aarch64-linux-
gnu/lib64/libstdc++.so.6.0.21
gcc-linaro-5.5.0-2017.10-x86_64_aarch64-linux-gnu/aarch64-linux-
gnu/lib64/libstdc++.a
gcc-linaro-5.5.0-2017.10-x86_64_aarch64-linux-gnu/aarch64-linux-
gnu/lib64/libasan_preinit.o

Zur Vereinfachung wird das neu erstellte Verzeichnis noch umbenannt:

~$ mv -v gcc-linaro-5.5.0-2017.10-x86_64_aarch64-linux-gnu linaro-aarch64
'gcc-linaro-5.5.0-2017.10-x86_64_aarch64-linux-gnu' -> 'linaro-aarch64'

Das Toolchain kann wie folgt getestet werden:

~$ cd linaro-aarch64/bin
~$ echo "main(){}" | ./aarch64-linux-gnu-gcc -x c -
<stdin>:1:1: warning: return type defaults to ‘int’ [-Wimplicit-int]
~$ file a.out
a.out: ELF 64-bit LSB executable, ARM aarch64, version 1 (SYSV), dynamically
linked, interpreter \
/lib/ld-linux-aarch64.so.1, for GNU/Linux 3.7.0,
BuildID[sha1]=e3733727fdcae630f517bc32fe62aaf1fa074380, not stripped
~$ rm a.out

Die Umgebungsvariable für den Cross-Kompiler wird dann wie folgt gesetzt:

CROSS_COMPILE="$(pwd)/toolchain/linaro-aarch64/bin/aarch64-linux-gnu-"

https://releases.linaro.org/components/toolchain/binaries/latest-5/aarch64-linux-gnu/

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

https://looper.de/wiki/ Printed on 2026/01/12 00:44

Architektur

Jetzt müüsen noch die Variablen für die Architektur gesetzt werden:

~$ export ARCH=arm
~$ export SUBARCH=arm

Hier muss bei Bedarf eine andere Architektur (zum Beispiel „arm64“) verwendet
werden.

Kernelquelle

Der Kernel für ein bereits angepasstes Gerät kann zum Beispiel von Github heruntergeladen werden.
Wichtig ist es hier, auf den richtigen Chipsatz des Gerätes zu achten. Nachfolgend wird ein anderer
Kernel für das Gerät Samsung Galaxy S5 (SM-G900F) gebaut, welches einen Qualcomm-Chipsatz
besitzt.

Im ersten Schritt wird das Repository auf den lokalen Rechner geklont:

~$ git clone -b cm-14.1
https://github.com/LineageOS/android_kernel_samsung_msm8974.git lineageos-
samsung-msm8974

Bauvorgang

Die Kernelkonfiguration ist im neu erstellten Verzeichnis „lineageos-samsung-msm8974/“ unter
„arch/arm/configs/“ zu finden, nachfolgend wird die Datei
„lineage_klte_bcm2079x_defconfig“ genutzt. Auch diese muss zum eigenen Gerät und zu
Architektur passen.

Jetzt erfolgt der Wechsel in das neu erstellte Verzeichnis und das Bauen kann durchgeführt werden:

~$ cd lineageos-samsung-msm8974
~$ make clean
make completed successfully (2 seconds)

https://github.com/LineageOS/android_kernel_samsung_msm8974
https://github.com/LineageOS/android_kernel_samsung_msm8974.git

2026/01/12 00:44 9/28 Kernelkompilation

Linux4Ever - https://looper.de/wiki/

~$ make mrproper
make completed successfully (4 seconds)

~$ make lineage_klte_bcm2079x_defconfig
 HOSTCC scripts/basic/fixdep
 HOSTCC scripts/kconfig/conf.o
 SHIPPED scripts/kconfig/zconf.tab.c
 SHIPPED scripts/kconfig/zconf.lex.c
 SHIPPED scripts/kconfig/zconf.hash.c
 HOSTCC scripts/kconfig/zconf.tab.o
 HOSTLD scripts/kconfig/conf
sound/soc/codecs/audience/Kconfig:40:warning: type of 'SND_SOC_ES_SLIM'
redefined from 'boolean' to 'tristate'
sound/soc/codecs/audience/Kconfig:43:warning: type of 'SND_SOC_ES_I2C'
redefined from 'boolean' to 'tristate'
boolean symbol SND_SOC_MAX98506 tested for 'm'? test forced to 'n'
sound/soc/codecs/audience/Kconfig:44:warning: choice value used outside its
choice group
sound/soc/codecs/audience/Kconfig:41:warning: choice value used outside its
choice group
#
configuration written to .config
#

make completed successfully (2 seconds)

~$ make -s -j$(nproc --all)
sound/soc/codecs/audience/Kconfig:40:warning: type of 'SND_SOC_ES_SLIM'
redefined from 'boolean' to 'tristate'
sound/soc/codecs/audience/Kconfig:43:warning: type of 'SND_SOC_ES_I2C'
redefined from 'boolean' to 'tristate'
boolean symbol SND_SOC_MAX98506 tested for 'm'? test forced to 'n'
...
HMAC-SHA256(builtime_bytes.bin)=
183c03ebecd2d7d347b1eacccfa290e85af99879e9f93349e96131e2810e8196
 Kernel: arch/arm/boot/Image is ready
 Kernel: arch/arm/boot/zImage is ready
 Kernel: arch/arm/boot/zImage-dtb is ready

make completed successfully (19 seconds)

Fehlerbehandlung

Es kann vorkommen, dass die Kompilierung mit einer Fehlermeldung abbricht. Hier muss dann von
Fall zu Fall geprüft werden, welche Kerneleinstellungen geändert werden müssen. Nachfolgend
werden ein paar Beispiele gezeigt.

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

https://looper.de/wiki/ Printed on 2026/01/12 00:44

net/netfilter/xt_TCPMSS.o

Die Kompilierung bricht mit folgender Meldung ab:

 Generating include/generated/mach-types.h
make[2]: *** Keine Regel vorhanden, um das Ziel „net/netfilter/xt_TCPMSS.o“,
 benötigt von „net/netfilter/built-in.o“, zu erstellen. Schluss.
make[2]: *** Es wird auf noch nicht beendete Prozesse gewartet...
scripts/Makefile.build:443: die Regel für Ziel „net/netfilter“ scheiterte
make[1]: *** [net/netfilter] Fehler 2
make[1]: *** Es wird auf noch nicht beendete Prozesse gewartet...
Makefile:961: die Regel für Ziel „net“ scheiterte
make: *** [net] Fehler 2

Aufruf der Kernelkonfiguration:

~$ make menuconfig

Hier dann „Load an Alternate Configuration File“ auswählen und folgendes eingeben:

arch/arm/configs/lineage_klte_bcm2079x_defconfig

Hier muss dann unter Umständen die selbst gewählte Kernelkonfiguration eingetragen werden.

Dann zu folgenden Konfigurationspunkt wechseln:

[*] Networking support —>
Networking options —>

[*] Network packet filtering framework (Netfilter) —>
Core Netfilter Configuration —>

[] „TCPMSS“ target support (den Stern hier bitte
rausnehmen)

Beim Beenden des Konfigurationsmenüs muss die Datei gespeichert werden.

Flashen des Kernels

Nach einem erfolgreichen Bauvorgang entsteht die Kerneldatei namens „zImage“.

Kernel: arch/arm/boot/zImage is ready

2026/01/12 00:44 11/28 Kernelkompilation

Linux4Ever - https://looper.de/wiki/

Damit diese Datei auf dem Telefon funktioniert, muss sie in das Boot-Image integriert werden
(„boot.img“). Die Boot-Image-Datei entsteht unter anderem als Nebenprodukt, wenn ein
angepasstes Image (zum Beispiel LineageOS) gebaut wird. Dem Author sind jetzt zwei Möglichkeiten
bekannt, das Kernel-Image in das Boot-Image zu integrieren, wobei auch nur eine funktioniert hat:
Android-Image-Kitchen.

Die Dateien können mit Hilfe von „git“ auf den lokalen Rechner geklont werden:

~$ git clone -b AIK-Linux
https://github.com/osm0sis/Android-Image-Kitchen.git

Die enthaltenen Skripte sind so erstellt wurden, dass alles innerhalb des neu erstellten Verzeichnisses
„Android-Image-Kitchen“ abläuft:

~$ cd Android-Image-Kitchen

Im ersten Schritt muss das Boot-Image entpackt werden:

~$./unpackimg.sh boot.img

Android Image Kitchen - UnpackImg Script
by osm0sis @ xda-developers

Supplied image: boot.img

Setting up work folders...

Image type: AOSP

Footer with "SEAndroid" type detected.

Splitting image to "split_img/"...
BOARD_KERNEL_CMDLINE console=null androidboot.hardware=qcom user_debug=31
msm_rtb.filter=0x37 ehci-hcd.park=3 \
zcache.enabled=1 zcache.compressor=lz4 androidboot.bootdevice=msm_sdcc.1
buildvariant=userdebug
BOARD_KERNEL_BASE 00000000
BOARD_NAME
BOARD_PAGE_SIZE 2048
BOARD_HASH_TYPE sha1
BOARD_KERNEL_OFFSET 00008000
BOARD_RAMDISK_OFFSET 02000000
BOARD_SECOND_OFFSET 00f00000
BOARD_TAGS_OFFSET 01e00000
BOARD_OS_VERSION 7.1.2
BOARD_OS_PATCH_LEVEL 2018-04

https://github.com/osm0sis/Android-Image-Kitchen/tree/AIK-Linux

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

https://looper.de/wiki/ Printed on 2026/01/12 00:44

BOARD_DT_SIZE 1843200

Unpacking ramdisk (as root) to "ramdisk/"...

Compression used: gzip
5851 blocks

Done!

Es wurden zwei neue Verzeichnisse „ramdisk“ und „split_img“ angelegt. Im zweiten befindet sich
unser Kernel-Image, welches ausgetauscht werden soll:

~$ cp -v zImage split_img/boot.img-zImage
'zImage' -> 'split_img/boot.img-zImage'

Im letzten Schritt muss das „neue“ Boot-Image wieder zusammengebaut werden:

~$./repackimg.sh

Android Image Kitchen - RepackImg Script
by osm0sis @ xda-developers

Packing ramdisk (as root)...

Using compression: gzip

Getting build information...
kernel = boot.img-zImage
cmdline = console=null androidboot.hardware=qcom user_debug=31
msm_rtb.filter=0x37 ehci-hcd.park=3 \
zcache.enabled=1 zcache.compressor=lz4 androidboot.bootdevice=msm_sdcc.1
buildvariant=userdebug
board =
base = 00000000
pagesize = 2048
kernel_offset = 00008000
ramdisk_offset = 02000000
second_offset = 00f00000
tags_offset = 01e00000
os_version = 7.1.2
os_patch_level = 2018-04
hash = sha1
dtb = boot.img-dtb

Building image...

Using format: AOSP

2026/01/12 00:44 13/28 Kernelkompilation

Linux4Ever - https://looper.de/wiki/

Appending footer...

Using type: SEAndroid

Done!

Als Ergebnis wird die Datei „image-new.img“ erstellt, welche auf das Telefon kopiert und dort (zum
Beispiel mit Hilfe vom TWRP) installiert werden kann.

Bauversuche SM-G900F

Nachfolgend sollen Bauversuche von Kompilierungen des Kernels für das Samsung Galaxy S5 (SM-
G900F) beschrieben werden.

OK: CyanogenMod

Der Kernel kann von der Seite github.com heruntergeladen werden und kann für ein angepasstes
Image verwendet werden.

Download

Der Download der Quellen mit „git“:

~$ git clone -b cm-14.1
https://github.com/CyanogenMod/android_kernel_samsung_klte.git
github_cyanogenmod_android-kernel-samsung-klte

Toolchain

Verlinken der Toolchain:

~$ cd github_cyanogenmod_android-kernel-samsung-klte
~$ ln -sf ../toolchain toolchain

https://github.com/CyanogenMod/android_kernel_samsung_klte

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

https://looper.de/wiki/ Printed on 2026/01/12 00:44

Bauskript

Bevor das Bauen des Kernel mit Hilfe des mitgelieferten Skriptes „build_kernel.sh“ gestartet
werden kann, muss dieses noch angepasst werden:

export CROSS_COMPILE=$(pwd)/toolchain/arm-linux-androideabi-4.9/bin/arm-
linux-androideabi-
mkdir -p output
...
if [-e output/arch/arm/boot/Image]; then
 cp output/arch/arm/boot/Image $(pwd)/arch/arm/boot/zImage
fi;

Jetzt kann das Skript ausgeführt werden:

~$ bash ./build_kernel.sh
make: Verzeichnis „/data/AndroidKernelBuild/github_cyanogenmod_android-
kernel-samsung-klte“ wird betreten
 HOSTCC scripts/basic/fixdep
 GEN /data/AndroidKernelBuild/github_cyanogenmod_android-kernel-
samsung-klte/output/Makefile
 HOSTCC scripts/kconfig/conf.o
...
make: Verzeichnis „/data/AndroidKernelBuild/github_cyanogenmod_android-
kernel-samsung-klte“ wird verlassen
make: Verzeichnis „/data/AndroidKernelBuild/github_cyanogenmod_android-
kernel-samsung-klte“ wird betreten
 GEN /data/AndroidKernelBuild/github_cyanogenmod_android-kernel-
samsung-klte/output/Makefile
scripts/kconfig/conf --silentoldconfig Kconfig
...
HMAC-SHA256(builtime_bytes.bin)=
6f415adf8ca4294d36522ca6d1db222bf8e0ec9db6006c60244cad843bed45cc
 OBJCOPY arch/arm/boot/Image
 Kernel: arch/arm/boot/Image is ready
 AS arch/arm/boot/compressed/head.o
 XZKERN arch/arm/boot/compressed/piggy.xzkern
 CC arch/arm/boot/compressed/misc.o
 CC arch/arm/boot/compressed/decompress.o
 CC arch/arm/boot/compressed/string.o
 SHIPPED arch/arm/boot/compressed/lib1funcs.S
 SHIPPED arch/arm/boot/compressed/ashldi3.S
 AS arch/arm/boot/compressed/lib1funcs.o
 AS arch/arm/boot/compressed/ashldi3.o
 AS arch/arm/boot/compressed/piggy.xzkern.o
 LD arch/arm/boot/compressed/vmlinux
 OBJCOPY arch/arm/boot/zImage
 Kernel: arch/arm/boot/zImage is ready

2026/01/12 00:44 15/28 Kernelkompilation

Linux4Ever - https://looper.de/wiki/

 CAT arch/arm/boot/zImage-dtb
 Kernel: arch/arm/boot/zImage-dtb is ready
make: Verzeichnis „/data/AndroidKernelBuild/github_cyanogenmod_android-
kernel-samsung-klte“ wird verlassen

Manueller Bauversuch

Vor dem erneuten Bauen sollten die Altlasten aufgeräumt werden:

~$ make clean && make mrproper

Jetzt der manuelle Bauversuch:

~$ make msm8974_sec_defconfig
VARIANT_DEFCONFIG=msm8974pro_sec_klte_eur_defconfig
SELINUX_DEFCONFIG=selinux_defconfig
 HOSTCC scripts/basic/fixdep
 HOSTCC scripts/kconfig/conf.o
 SHIPPED scripts/kconfig/zconf.tab.c
...
arch/arm/configs/msm8974pro_sec_klte_eur_defconfig:213:warning: override:
reassigning to symbol NET_SCHED
arch/arm/configs/msm8974pro_sec_klte_eur_defconfig:216:warning: override:
reassigning to symbol NET_CLS_ACT
arch/arm/configs/msm8974pro_sec_klte_eur_defconfig:218:warning: override:
reassigning to symbol NET_EMATCH
KCONFIG_DEBUG((null))
#
configuration written to .config
#

~$ make -j$(nproc --all)

Fehler "smd_init_dt.c"

 CC kernel/sysctl_binary.o
 CC mm/fadvise.o
arch/arm/mach-msm/smd_init_dt.c:24:25: fatal error: smd_private.h: No such
file or directory
 #include <smd_private.h>
 ^
compilation terminated.
scripts/Makefile.build:307: die Regel für Ziel „arch/arm/mach-

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

https://looper.de/wiki/ Printed on 2026/01/12 00:44

msm/smd_init_dt.o“ scheiterte
make[1]: *** [arch/arm/mach-msm/smd_init_dt.o] Fehler 1
make[1]: *** Es wird auf noch nicht beendete Prozesse gewartet...
 CC mm/maccess.o
 CC ipc/msgutil.o

Eine Recherche im Internet ergibt, dass in der Datei „arch/arm/mach-msm/smd_init_dt.c“ die
Zeile 24: „#include <smd_private.h>“ in „#include "smd_private.h"“ geändert werden
muss.

Fehler "rtac.c"

 CC fs/f2fs/node.o
 LD drivers/clk/built-in.o
sound/soc/msm/qdsp6v2/rtac.c:29:21: fatal error: q6voice.h: No such file or
directory
 #include <q6voice.h>
 ^
compilation terminated.
scripts/Makefile.build:307: die Regel für Ziel
„sound/soc/msm/qdsp6v2/rtac.o“ scheiterte
make[4]: *** [sound/soc/msm/qdsp6v2/rtac.o] Fehler 1
make[4]: *** Es wird auf noch nicht beendete Prozesse gewartet...
 LD drivers/clocksource/built-in.o
 CC drivers/cpufreq/cpufreq.o

Die Reparatur ist ähnlich des vorherigen Fehlers. In der Datei „sound/soc/msm/qdsp6v2/rtac.c“
die Zeile 29: „#include <q6voice.h>“ in „#include "q6voice.h"“ ändern.

Fehler "mdss_mdp_trace.h"

 LD drivers/usb/core/built-in.o
 CC drivers/usb/gadget/udc-core.o
In file included from drivers/video/msm/mdss/mdss_mdp_trace.h:255:0,
 from drivers/video/msm/mdss/mdss_mdp.c:61:
include/trace/define_trace.h:79:43: fatal error: ./mdss_mdp_trace.h: No such
file or directory
 #include TRACE_INCLUDE(TRACE_INCLUDE_FILE)
 ^
compilation terminated.
scripts/Makefile.build:307: die Regel für Ziel

2026/01/12 00:44 17/28 Kernelkompilation

Linux4Ever - https://looper.de/wiki/

„drivers/video/msm/mdss/mdss_mdp.o“ scheiterte
make[4]: *** [drivers/video/msm/mdss/mdss_mdp.o] Fehler 1
scripts/Makefile.build:443: die Regel für Ziel „drivers/video/msm/mdss“
scheiterte
make[3]: *** [drivers/video/msm/mdss] Fehler 2
scripts/Makefile.build:443: die Regel für Ziel „drivers/video/msm“
scheiterte
make[2]: *** [drivers/video/msm] Fehler 2
scripts/Makefile.build:443: die Regel für Ziel „drivers/video“ scheiterte
make[1]: *** [drivers/video] Fehler 2
make[1]: *** Es wird auf noch nicht beendete Prozesse gewartet...
 CC drivers/usb/gadget/android.o
 CC net/ipv4/netfilter/nf_nat_ftp.o

Hier wird die Datei „drivers/video/msm/mdss/mdss_mdp_trace.h“ im Verzeichnis
„include/trace/“ von der Datei „define_trace.h“ gesucht. Damit dies funktioniert, kann eine
symbolische Verknüpfung erstellt werden:

~$ cd include/trace/
~$ ln -s ../../drivers/video/msm/mdss/mdss_mdp_trace.h
~$ cd -

Fehler "mdss_mdp.h"

 CC drivers/usb/dwc3/debugfs.o
 CC drivers/usb/dwc3/dwc3-msm.o
In file included from include/trace/define_trace.h:79:0,
 from drivers/video/msm/mdss/mdss_mdp_trace.h:255,
 from drivers/video/msm/mdss/mdss_mdp.c:61:
include/trace/./mdss_mdp_trace.h:25:22: fatal error: mdss_mdp.h: No such
file or directory
 #include "mdss_mdp.h"
 ^
compilation terminated.
scripts/Makefile.build:307: die Regel für Ziel
„drivers/video/msm/mdss/mdss_mdp.o“ scheiterte
make[4]: *** [drivers/video/msm/mdss/mdss_mdp.o] Fehler 1
make[4]: *** Es wird auf noch nicht beendete Prozesse gewartet...
 CC drivers/usb/gadget/udc-core.o
 CC drivers/usb/gadget/android.o

Dieser Fehler ist wieder ähnlich dem vorherigen Fehler. eine symbolische Verknüpfung der Datei
„./drivers/video/msm/mdss/mdss_mdp.h“ schafft Abhilfe:

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

https://looper.de/wiki/ Printed on 2026/01/12 00:44

~$ cd include/trace/
~$ ln -s ../../drivers/video/msm/mdss/mdss_mdp.h
~$ cd -

Jetzt kann der Kernel erfolgreich gebaut werden:

HMAC-SHA256(builtime_bytes.bin)=
98871c7ee747591b987d4b11ec74fdfc316e1a0fe159a2dabe85c6ae958a3c87
 OBJCOPY arch/arm/boot/Image
 Kernel: arch/arm/boot/Image is ready
 AS arch/arm/boot/compressed/head.o
 XZKERN arch/arm/boot/compressed/piggy.xzkern
 CC arch/arm/boot/compressed/misc.o
 CC arch/arm/boot/compressed/decompress.o
 CC arch/arm/boot/compressed/string.o
 SHIPPED arch/arm/boot/compressed/lib1funcs.S
 SHIPPED arch/arm/boot/compressed/ashldi3.S
 AS arch/arm/boot/compressed/lib1funcs.o
 AS arch/arm/boot/compressed/ashldi3.o
 AS arch/arm/boot/compressed/piggy.xzkern.o
 LD arch/arm/boot/compressed/vmlinux
 OBJCOPY arch/arm/boot/zImage
 Kernel: arch/arm/boot/zImage is ready
 CAT arch/arm/boot/zImage-dtb
 Kernel: arch/arm/boot/zImage-dtb is ready

FEHLER: Boeffla-Venom-Kernel

Der Kernel wurde auf der Seite von xda-developers.com gefunden. Die Quellen befinden sich auf der
Seite von github.com.

Download

Der Download der Quellen mit „git“:

~$ git clone -b cm-14.1
https://github.com/TheSkater187/android_kernel_samsung_msm8974
github_theskater187_android-kernel-samsung-klte

https://forum.xda-developers.com/galaxy-s5/orig-development/kernel-genocide-venom-kernel-12-02-16-t3512403
https://github.com/TheSkater187

2026/01/12 00:44 19/28 Kernelkompilation

Linux4Ever - https://looper.de/wiki/

Toolchain

Verlinken der Toolchain:

~$ cd github_theskater187_android-kernel-samsung-klte
~$ ln -sf ../toolchain toolchain

Bauskript

Damit die Toolchain gefunden wird, muss das Skript „build_kernel.sh“ angepasst werden:

export CROSS_COMPILE=$(pwd)/toolchain/arm-linux-androideabi-4.9/bin/arm-
linux-androideabi-
mkdir -p output
...
if [-e output/arch/arm/boot/Image]; then
 cp output/arch/arm/boot/Image $(pwd)/arch/arm/boot/zImage
fi;

Jetzt kann das Skript ausgeführt werden:

~$ bash ./build_kernel.sh
make: Verzeichnis „/data/AndroidKernelBuild/github_theskater187_android-
kernel-samsung-klte“ wird betreten
 HOSTCC scripts/basic/fixdep
 GEN /data/AndroidKernelBuild/github_theskater187_android-kernel-
samsung-klte/output/Makefile
 HOSTCC scripts/kconfig/conf.o
...
arch/arm/mach-msm/built-in.o:msm8974-thermistor.c:function msm8974_init:
error: undefined reference to 'msm_8974_init_gpiomux'
arch/arm/mach-msm/built-in.o:msm8974-thermistor.c:function pil_boot: error:
undefined reference to 'poweroff_charging'
arch/arm/mach-msm/built-in.o:msm8974-thermistor.c:function msm_restart:
error: undefined reference to 'poweroff_charging'
drivers/built-in.o:sii8240.c:function of_sii8240_probe_dt: error: undefined
reference to 'acc_register_notifier'
/data/AndroidKernelBuild/github_theskater187_android-kernel-samsung-
klte/Makefile:889: die Regel für Ziel „.tmp_vmlinux1“ scheiterte
make[1]: *** [.tmp_vmlinux1] Fehler 1
Makefile:130: die Regel für Ziel „sub-make“ scheiterte
make: *** [sub-make] Fehler 2
make: Verzeichnis „/data/AndroidKernelBuild/github_theskater187_android-
kernel-samsung-klte“ wird verlassen

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

https://looper.de/wiki/ Printed on 2026/01/12 00:44

Bisher wurde für diesen Fehler noch keine Lösung gefunden.

Manueller Bauversuch

Vor dem erneuten Bauen sollten die Altlasten aufgeräumt werden:

~$ make clean && make mrproper

Jetzt der manuelle Bauversuch:

make msm8974_sec_defconfig
VARIANT_DEFCONFIG=msm8974pro_sec_klte_eur_defconfig
SELINUX_DEFCONFIG=selinux_defconfig
 HOSTCC scripts/basic/fixdep
 HOSTCC scripts/kconfig/conf.o
 SHIPPED scripts/kconfig/zconf.tab.c
...
arch/arm/configs/msm8974_sec_defconfig:434:warning: override: reassigning to
symbol HID_ELECOM
arch/arm/configs/msm8974_sec_defconfig:612:warning: override: reassigning to
symbol KEYS
#
configuration written to .config
#

~$ make -j$(nproc --all)

Es tritt der gleiche Fehler auf.

OK: CrazySuperKernel

Der Kernel wurde auf der Seite von github.com gefunden.

https://github.com/TheSkater187

2026/01/12 00:44 21/28 Kernelkompilation

Linux4Ever - https://looper.de/wiki/

Download

Der Download der Quellen mit „git“:

~$ git clone
https://github.com/TheSkater187/CrazySuperKernel-CM14.1-KLTE-New-rebase.git
github_theskater187_crazysuperkernel

Toolchain

Verlinken der Toolchain:

~$ cd github_theskater187_crazysuperkernel
~$ ln -sf ../toolchain toolchain

Bauskript

Damit die Toolchain gefunden wird, muss das Skript „build_kernel.sh“ angepasst werden:

export CROSS_COMPILE=$(pwd)/toolchain/arm-linux-androideabi-4.9/bin/arm-
linux-androideabi-
mkdir -p output
...
if [-e output/arch/arm/boot/Image]; then
 cp output/arch/arm/boot/Image $(pwd)/arch/arm/boot/zImage
fi;

Jetzt kann das Skript ausgeführt werden:

make: Verzeichnis
„/data/AndroidKernelBuild/github_theskater187_crazysuperkernel“ wird
betreten
 HOSTCC scripts/basic/fixdep
 GEN
/data/AndroidKernelBuild/github_theskater187_crazysuperkernel/output/Makefil
e
 HOSTCC scripts/kconfig/conf.o
 SHIPPED scripts/kconfig/zconf.tab.c
...
make: Verzeichnis
„/data/AndroidKernelBuild/github_theskater187_crazysuperkernel“ wird
verlassen

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

https://looper.de/wiki/ Printed on 2026/01/12 00:44

make: Verzeichnis
„/data/AndroidKernelBuild/github_theskater187_crazysuperkernel“ wird
betreten
 GEN
/data/AndroidKernelBuild/github_theskater187_crazysuperkernel/output/Makefil
e
scripts/kconfig/conf --silentoldconfig Kconfig
...
 DTC arch/arm/boot/msm8974pro-ac-sec-k-r14.dtb
 CAT arch/arm/boot/zImage-dtb
 Kernel: arch/arm/boot/zImage-dtb is ready
make[2]: Für das Ziel „arch/arm/boot/dtbs“ ist nichts zu tun.
make: Verzeichnis
„/data/AndroidKernelBuild/github_theskater187_crazysuperkernel“ wird
verlassen

OK: Boeffla-Kernel

Der Kernel wurde auf der Seite von xda-developers.com gefunden. Die Quellen befinden sich auf
github.com.

Download

Der Download der Quellen mit „git“:

~$ git clone -b boeffla_cm14
https://github.com/andip71/boeffla-kernel-cm-s5.git github_andip71_boeffla-
cm14-s5

Toolchain

Verlinken der Toolchain:

~$ cd github_andip71_boeffla-cm14-s5
~$ ln -sf ../toolchain toolchain

bbuild-anykernel.sh

https://forum.xda-developers.com/galaxy-s5/orig-development/kernel-boeffla-kernel-1-0-beta1-23-03-t3062073
https://github.com/andip71

2026/01/12 00:44 23/28 Kernelkompilation

Linux4Ever - https://looper.de/wiki/

Anpassen des Skriptes „bbuild-anykernel.sh“:

TOOLCHAIN="$(pwd)/toolchain/google-ndk/bin/arm-linux-androideabi-"

Erstellen des Bauverzeichnisses:

~$./bbuild-anykernel.sh 0
0 - copy code

Bereinigen:

~$./bbuild-anykernel.sh 1
1 - make clean

Konfiguration erstellen:

~$./bbuild-anykernel.sh 2
2 - make config

Makestring: O=output arch=arm boeffla_defconfig
VARIANT_DEFCONFIG=boeffla_defconfig_variant
 HOSTCC scripts/basic/fixdep
 GEN /data/AndroidKernelBuild/build/output/Makefile
...
sound/soc/codecs/audience/Kconfig:41:warning: choice value used outside its
choice group
#
configuration written to .config
#

Kompilieren des Kernels:

~$./bbuild-anykernel.sh 3
3 - compile

 GEN /data/AndroidKernelBuild/build/output/Makefile
scripts/kconfig/conf --silentoldconfig Kconfig
sound/soc/codecs/audience/Kconfig:40:warning: type of 'SND_SOC_ES_SLIM'
redefined from 'boolean' to 'tristate'
sound/soc/codecs/audience/Kconfig:43:warning: type of 'SND_SOC_ES_I2C'
redefined from 'boolean' to 'tristate'
...
chipset: 3255369473, rev: 65536, platform: 5, subtype: 0
=> Found 7 unique DTB(s)

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

https://looper.de/wiki/ Printed on 2026/01/12 00:44

Generating master DTB... completed
compile time: 168 seconds
Kernel image size (bytes):
6486856

Kernel vorbereiten:

~$./bbuild-anykernel.sh 4
4 - prepare anykernel
>>> cleanup repack folder

'/data/AndroidKernelBuild/build/output/net/sunrpc/sunrpc.ko' ->
'/data/AndroidKernelBuild/repack/modules/sunrpc.ko'
'/data/AndroidKernelBuild/build/output/net/sunrpc/auth_gss/auth_rpcgss.ko'
-> '/data/AndroidKernelBuild/repack/modules/auth_rpcgss.ko'
'/data/AndroidKernelBuild/build/output/drivers/input/joystick/xpad.ko' ->
'/data/AndroidKernelBuild/repack/modules/xpad.ko'
...
'/data/AndroidKernelBuild/build/output/fs/nfs/nfs.ko' ->
'/data/AndroidKernelBuild/repack/modules/nfs.ko'
'/data/AndroidKernelBuild/build/output/fs/ntfs/ntfs.ko' ->
'/data/AndroidKernelBuild/repack/modules/ntfs.ko'>>> strip modules

Kernel erstellen:

~$./bbuild-anykernel.sh 5
5 - create anykernel zip
>>> create flashable zip

 adding: anykernel.sh (deflated 54%)
 adding: dtb (deflated 81%)
 adding: META-INF/ (stored 0%)
...
 adding: tools/busybox (deflated 37%)
 adding: zImage (deflated 0%)>>> create load&flash files

Die fertigen Dateien liegen eine Verzeichnisebene höher in „build/“ und „repack/“.

build_kernel.sh

Anpassen des Skriptes „build_kernel.sh“:

2026/01/12 00:44 25/28 Kernelkompilation

Linux4Ever - https://looper.de/wiki/

export CROSS_COMPILE="$(pwd)/toolchain/arm-linux-androideabi-4.9/bin/arm-
linux-androideabi-"

Als nächstes wurden alle Kernelparameter aus der Datei
„./arch/arm/configs/boeffla_defconfig“, die nicht in der Datei
„./arch/arm/configs/msm8974_sec_defconfig“ enthalten sind, in dieser hinzugefügt. Welche
Parameter das sind, kann in dieser Datei nachgelesen werden.

Kernel bauen:

~$ bash ./build_kernel.sh
make: Verzeichnis „/data/AndroidKernelBuild/github_andip71_boeffla-cm14-s5“
wird betreten
 HOSTCC scripts/basic/fixdep
 GEN /data/AndroidKernelBuild/github_andip71_boeffla-cm14-
s5/output/Makefile
 HOSTCC scripts/kconfig/conf.o
...
 OBJCOPY arch/arm/boot/zImage
 Kernel: arch/arm/boot/zImage is ready
 CAT arch/arm/boot/zImage-dtb
 Kernel: arch/arm/boot/zImage-dtb is ready
make: Verzeichnis „/data/AndroidKernelBuild/github_andip71_boeffla-cm14-s5“
wird verlassen
'output/arch/arm/boot/Image' ->
'/data/AndroidKernelBuild/github_andip71_boeffla-cm14-
s5/arch/arm/boot/zImage'

Manuelles Bauen

Kopieren der Datei „./arch/arm/configs/msm8974_sec_defconfig“ zu einer eigenen Datei
„./arch/arm/configs/meine-samsung-konfiguration_defconfig“:

~$ cp -v ./arch/arm/configs/msm8974_sec_defconfig ./arch/arm/configs/meine-
samsung-konfiguration_defconfig
'./arch/arm/configs/msm8974_sec_defconfig' -> './arch/arm/configs/meine-
samsung-konfiguration_defconfig'

Ergänzen aller fehlenden Kernelparameter aus der Datei
„./arch/arm/configs/boeffla_defconfig“, die nicht in der Datei
„./arch/arm/configs/meine-samsung-konfiguration_defconfig“ vorhanden sind. Welche
Parameter das sind, kann in dieser Datei nachgelesen werden. Die verwendete Konfigurationsdatei

https://looper.de/wiki/lib/exe/fetch.php?media=android:boeffla-kernel_msm8974-boeffla-defconfig.txt
https://looper.de/wiki/lib/exe/fetch.php?media=android:boeffla-kernel_msm8974-boeffla-defconfig.txt

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

https://looper.de/wiki/ Printed on 2026/01/12 00:44

„meine-samsung-konfiguration_defconfig“ ist hier zu finden.

Bereinigen des Baumes:

~$ make clean && make mrproper

Erstellen der Konfiguration:

~$ make meine-samsung-konfiguration_defconfig
 HOSTCC scripts/basic/fixdep
 HOSTCC scripts/kconfig/conf.o
 SHIPPED scripts/kconfig/zconf.tab.c
 SHIPPED scripts/kconfig/zconf.lex.c
 SHIPPED scripts/kconfig/zconf.hash.c
 HOSTCC scripts/kconfig/zconf.tab.o
 HOSTLD scripts/kconfig/conf
sound/soc/codecs/audience/Kconfig:40:warning: type of 'SND_SOC_ES_SLIM'
redefined from 'boolean' to 'tristate'
sound/soc/codecs/audience/Kconfig:43:warning: type of 'SND_SOC_ES_I2C'
redefined from 'boolean' to 'tristate'
boolean symbol SND_SOC_MAX98506 tested for 'm'? test forced to 'n'
sound/soc/codecs/audience/Kconfig:44:warning: choice value used outside its
choice group
sound/soc/codecs/audience/Kconfig:41:warning: choice value used outside its
choice group
arch/arm/configs/bornis_defconfig:866:warning: override: reassigning to
symbol RCU_FAST_NO_HZ
arch/arm/configs/bornis_defconfig:867:warning: override: reassigning to
symbol IKCONFIG
arch/arm/configs/bornis_defconfig:868:warning: override: reassigning to
symbol IKCONFIG_PROC
arch/arm/configs/bornis_defconfig:899:warning: override: reassigning to
symbol MODULES
arch/arm/configs/bornis_defconfig:900:warning: override: reassigning to
symbol MODULE_UNLOAD
arch/arm/configs/bornis_defconfig:901:warning: override: reassigning to
symbol MODULE_FORCE_UNLOAD
arch/arm/configs/bornis_defconfig:1175:warning: override: reassigning to
symbol JOYSTICK_XPAD
arch/arm/configs/bornis_defconfig:1295:warning: override: reassigning to
symbol HID_ELECOM
arch/arm/configs/bornis_defconfig:1473:warning: override: reassigning to
symbol KEYS
#
configuration written to .config
#

https://looper.de/wiki/lib/exe/fetch.php?media=android:meine-samsung-konfiguration_defconfig

2026/01/12 00:44 27/28 Kernelkompilation

Linux4Ever - https://looper.de/wiki/

Erstellen des Kernels:

~$ make -j$(nproc --all)
scripts/kconfig/conf --silentoldconfig Kconfig
sound/soc/codecs/audience/Kconfig:40:warning: type of 'SND_SOC_ES_SLIM'
redefined from 'boolean' to 'tristate'
sound/soc/codecs/audience/Kconfig:43:warning: type of 'SND_SOC_ES_I2C'
redefined from 'boolean' to 'tristate'
boolean symbol SND_SOC_MAX98506 tested for 'm'? test forced to 'n'
sound/soc/codecs/audience/Kconfig:44:warning: choice value used outside its
choice group
sound/soc/codecs/audience/Kconfig:41:warning: choice value used outside its
choice group
 WRAP arch/arm/include/generated/asm/auxvec.h
 WRAP arch/arm/include/generated/asm/bitsperlong.h
 WRAP arch/arm/include/generated/asm/cputime.h
...
 AS arch/arm/boot/compressed/ashldi3.o
 AS arch/arm/boot/compressed/piggy.xzkern.o
 LD arch/arm/boot/compressed/vmlinux
 OBJCOPY arch/arm/boot/zImage
 Kernel: arch/arm/boot/zImage is ready
 CAT arch/arm/boot/zImage-dtb
 Kernel: arch/arm/boot/zImage-dtb is ready

Weitere Funde

Es gibt im Internet noch verschiedene andere Kernel zu finden, die bisher nicht weiter getestet
wurden:

https://www.android-hilfe.de/forum/aosp-aokp-basierende-custom-roms-fuer-samsung-galaxy-s5
.2028/
https://android-hubo.de/thread/5730-smartpack-kernel-g900f-lineageos-cm14-1-samsung-galax
y-s5/
https://github.com/gsstudios/LOS-plus-kernel
https://github.com/bemerguy/tuned-kernel-LOS-s5
https://sunilpaulmathew.github.io/downloads/
https://github.com/friedrich420/S5-G900F-AEL-Kernel-LOLLIPOP
xda-developers.com (Stock-Kernel)

— Steffen Bornemann 15.06.2018

CHROOT, DEBIAN, Google, NDK, Toolchain, ARM, Kernel, Flash, SM-G900F, CyanogenMod

https://www.android-hilfe.de/forum/aosp-aokp-basierende-custom-roms-fuer-samsung-galaxy-s5.2028/
https://www.android-hilfe.de/forum/aosp-aokp-basierende-custom-roms-fuer-samsung-galaxy-s5.2028/
https://android-hubo.de/thread/5730-smartpack-kernel-g900f-lineageos-cm14-1-samsung-galaxy-s5/
https://android-hubo.de/thread/5730-smartpack-kernel-g900f-lineageos-cm14-1-samsung-galaxy-s5/
https://github.com/gsstudios/LOS-plus-kernel
https://github.com/bemerguy/tuned-kernel-LOS-s5
https://sunilpaulmathew.github.io/downloads/
https://github.com/friedrich420/S5-G900F-AEL-Kernel-LOLLIPOP
https://forum.xda-developers.com/galaxy-s5/development/kernel-smartpack-project-stock-t3568810
mailto:steffen.bornemann@gmx.de
https://looper.de/wiki/doku.php?id=tag:chroot&do=showtag&tag=CHROOT
https://looper.de/wiki/doku.php?id=tag:debian&do=showtag&tag=DEBIAN
https://looper.de/wiki/doku.php?id=tag:google&do=showtag&tag=Google
https://looper.de/wiki/doku.php?id=tag:ndk&do=showtag&tag=NDK
https://looper.de/wiki/doku.php?id=tag:toolchain&do=showtag&tag=Toolchain
https://looper.de/wiki/doku.php?id=tag:arm&do=showtag&tag=ARM
https://looper.de/wiki/doku.php?id=tag:kernel&do=showtag&tag=Kernel
https://looper.de/wiki/doku.php?id=tag:flash&do=showtag&tag=Flash
https://looper.de/wiki/doku.php?id=tag:sm-g900f&do=showtag&tag=SM-G900F
https://looper.de/wiki/doku.php?id=tag:cyanogenmod&do=showtag&tag=CyanogenMod

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

https://looper.de/wiki/ Printed on 2026/01/12 00:44

From:
https://looper.de/wiki/ - Linux4Ever

Permanent link:
https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

Last update: 2025/12/11 15:00

https://looper.de/wiki/
https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

	Kernelkompilation
	Nützliche Webseiten
	Voraussetzungen
	Toolchain
	DEBIAN-Pakete
	Google NDK
	Google Prebuilts
	GNU Arm Embedded Toolchain
	Nathanchance Prebuilt ARM
	Linaro ARM
	UBER Toolchain
	Linaro AARCH64

	Architektur
	Kernelquelle
	Bauvorgang
	Fehlerbehandlung
	net/netfilter/xt_TCPMSS.o

	Flashen des Kernels
	Bauversuche SM-G900F
	OK: CyanogenMod
	Download
	Toolchain
	Bauskript
	Manueller Bauversuch
	Fehler "smd_init_dt.c"
	Fehler "rtac.c"
	Fehler "mdss_mdp_trace.h"
	Fehler "mdss_mdp.h"

	FEHLER: Boeffla-Venom-Kernel
	Download
	Toolchain
	Bauskript
	Manueller Bauversuch

	OK: CrazySuperKernel
	Download
	Toolchain
	Bauskript

	OK: Boeffla-Kernel
	Download
	Toolchain
	bbuild-anykernel.sh
	build_kernel.sh
	Manuelles Bauen

	Weitere Funde

