2026/01/12 00:44 1/28 Kernelkompilation

Kernelkompilation

Nachfolgend soll die Mdglichkeit beschrieben werden, einen anderen Kernel flr das Android Custom
ROM zu bauen und zu flashen.

Nutzliche Webseiten

Auf folgenden Webseiten wurden Informationen dazu gefunden:

e https://wiki.ubuntuusers.de/Archiv/GNU_ARM-Toolchain/
https://forum.xda-developers.com/showthread.php?t=2073775
https://forum.xda-developers.com/android/software/guide-easy-kernel-building-tutorial-t358105
7
https://forum.xda-developers.com/chef-central/android/guide-how-to-build-android-kernel-t3654
336
https://forum.xda-developers.com/android/software-hacking/reference-how-to-compile-android-
kernel-t3627297

Voraussetzungen

Es wird ein DEBIAN-Linux-System vorausgesetzt, sowie eine Verbindung zum Internet, um Dateien
herunterzuladen. Es kann ein Minimalinstallation als Voraussetzung genutzt werden. Nachfolgend
werden alle Schritte in einer CHROOT-Umgebung durchgefuhrt.

Folgende Pakete mussen zusatzlich noch installiert werden:

~# apt install python libssl-dev build-essential libgmp3-dev libmpfr-dev
libx11-6 libx1l-dev texinfo flex bison libmpc-dev \

libncurses5 libncurses5-dbg libncurses5-dev libncursesw5 libncursesw5-dbg
libncursesw5-dev zlibc git bc

Toolchain

Eine ,Toolchain” ist eine Art Werkzeugkiste, welche Programme beinhaltet, die flr die Erstellung
des Kernels verwendet werden. Das bekannteste Toolchain kommt von Google selbst: NDK. Aber es
gibt auch andere, die zum Beispiel auf der Seite elinux.org kurz beschrieben werden.

Linux4Ever - https://looper.de/wiki/

https://wiki.ubuntuusers.de/Archiv/GNU_ARM-Toolchain/
https://forum.xda-developers.com/showthread.php?t=2073775
https://forum.xda-developers.com/android/software/guide-easy-kernel-building-tutorial-t3581057
https://forum.xda-developers.com/android/software/guide-easy-kernel-building-tutorial-t3581057
https://forum.xda-developers.com/chef-central/android/guide-how-to-build-android-kernel-t3654336
https://forum.xda-developers.com/chef-central/android/guide-how-to-build-android-kernel-t3654336
https://forum.xda-developers.com/android/software-hacking/reference-how-to-compile-android-kernel-t3627297
https://forum.xda-developers.com/android/software-hacking/reference-how-to-compile-android-kernel-t3627297
https://looper.de/wiki/doku.php?id=debian-linux:minimalinstallation
https://looper.de/wiki/doku.php?id=software:schroot#schroot
https://developer.android.com/tools/sdk/ndk/index.html
https://elinux.org/Toolchains

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

DEBIAN-Pakete

Das DEBIAN-System bringt selbst auch Toolchains mit, die Uber die Paketverwaltung installiert werden
konnen:

e gcc-arm-linux-gnueabi (fur ARM-Architekturen)
e gcc-aarch64-linux-gnu (fir ARM64-Architekturen)

Folgende Pakete werden bei der Installation von ,gcc-arm-1linux-gnueabi” mit installiert:

binutils-arm-linux-gnueabi cpp-6-arm-linux-gnueabi cpp-arm-linux-gnueabi
gcc-6-arm-linux-gnueabi \

gcc-6-arm-linux-gnueabi-base gcc-6-cross-base gcc-arm-linux-gnueabi
libasan3-armel-cross libatomicl-armel-cross \

libc6-armel-cross libc6-dev-armel-cross libgcc-6-dev-armel-cross libgccl-
armel-cross libgompl-armel-cross \

libstdc++6-armel-cross libubsan@-armel-cross linux-libc-dev-armel-cross

Die Umgebungsvariable flr den Cross-Kompiler wird dann wie folgt gesetzt:

CROSS COMPILE="/usr/bin/arm-linux-gnueabi-"

Google NDK

Das Toolchain kann hier heruntergeladen werden.

Das heruntergeladene Archiv wird dann entpackt:

~$ cd toolchain
~$ unzip android-ndk-rl7-1linux-x86 64.zip
Archive: android-ndk-rl7-1linux-x86 64.zip
creating: android-ndk-rl7/
creating: android-ndk-rl7/toolchains/
inflating: android-ndk-r17/toolchains/NOTICE-MIPS64
creating: android-ndk-rl7/toolchains/x86-4.9/

inflating: android-ndk-rl7/python-packages/fastboot/setup.py
inflating: android-ndk-r17/CHANGELOG.md
inflating: android-ndk-r17/ndk-build

https://looper.de/wiki/ Printed on 2026/01/12 00:44

https://developer.android.com/ndk/downloads/

2026/01/12 00:44 3/28 Kernelkompilation

Zur Kompilierung des Kernels wird aber nicht das komplette NDK bendtigt. Deswegen kann das
Toolchain extra als ,Standalone“-Variante installiert werden:

~$ cd android-ndk-rl7

~$ build/tools/make-standalone-toolchain.sh --install-dir=../google-ndk-rl7
HOST 0S=linux

HOST EXE=

HOST ARCH=x86 64

HOST TAG=linux-x86 64

HOST NUM_ CPUS=8

BUILD NUM CPUS=16

Auto-config: --arch=arm
Toolchain installed to ../google-ndk-rl7.
~$ cd ..

Das Verzeichnis ,android-ndk-rl17“ kann jetzt bei Bedarf auch wieder entfernt werden, da es nicht
mehr bendtigt wird.

Das Toolchain kann wie folgt getestet werden:

~$ cd google-ndk-rl7/bin

~$ echo "main(){}" | ./arm-linux-androideabi-gcc -x c -

~$ file a.out

a.out: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically
linked, interpreter /system/bin/linker, not stripped

~$ rm a.out

Die Umgebungsvariable fur den Cross-Kompiler wird dann wie folgt gesetzt:

CROSS COMPILE="$(pwd)/toolchain/google-ndk/bin/arm-1linux-androideabi-"

Google Prebuilts

Das Toolchain kann hier heruntergeladen werden. Nachfolgend wird das Toolchain ,arm-linux-
androideabi-4.9" heruntergeladen.

Der Download erfolgt mit ,,git“:

~$ git clone
https://android.googlesource.com/platform/prebuilts/gcc/linux-x86/arm/arm-11i
nux-androideabi-4.9

Linux4Ever - https://looper.de/wiki/

https://android.googlesource.com/platform/prebuilts/gcc/linux-x86/arm/

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

Klone nach 'arm-linux-androideabi-4.9'

remote: Sending approximately 262.98 MiB ...

remote: Counting objects: 396, done

remote: Total 2263 (delta 1060), reused 2263 (delta 1060)

Empfange Objekte: 100% (2263/2263), 262.98 MiB | 706.00 KiB/s, Fertig.
Lose Unterschiede auf: 100% (1060/1060), Fertig.

Die Umgebungsvariable flr den Cross-Kompiler wird dann wie folgt gesetzt:

CROSS COMPILE="$(pwd)/toolchain/arm-linux-androideabi-4.9/bin/arm-1linux-
androideabi-"

GNU Arm Embedded Toolchain

Das Toolchain kann hier heruntergeladen werden.

Das heruntergeladene Archiv wird dann entpackt:

~$ tar xvfj gcc-arm-none-eabi-7-2017-g4-major-linux.tar.bz2
gcc-arm-none-eabi-7-2017-g4-major/
gcc-arm-none-eabi-7-2017-g4-major/lib/
gcc-arm-none-eabi-7-2017-g4-major/lib/libccl.s0.0.0.0
gcc-arm-none-eabi-7-2017-g4-major/bin/arm-none-eabi-cpp

gcc-arm-none-eabi-7-2017-g4-major/bin/arm-none-eabi-gcc-7.2.1
gcc-arm-none-eabi-7-2017-g4-major/bin/arm-none-eabi-nm

Zur Vereinfachung wird das neu erstellte Verzeichnis noch umbenannt:

~$ mv -v gcc-arm-none-eabi-7-2017-q4-major gnu-arm-7-2017-q4
‘gcc-arm-none-eabi-7-2017-g4-major' -> 'gnu-arm-7-2017-q4'

Die Umgebungsvariable fur den Cross-Kompiler wird dann wie folgt gesetzt:

CROSS COMPILE="$(pwd)/toolchain/gnu-arm-7-2017-q94/bin/arm-none-eabi-"

https://looper.de/wiki/ Printed on 2026/01/12 00:44

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm/downloads

2026/01/12 00:44 5/28 Kernelkompilation

Nathanchance Prebuilt ARM

Dieses Toolchain kommt von xda-developers.com.

Der Download erfolgt Uber das Klonen:

git clone -b arm-gnu-7.x --depth=1
https://github.com/nathanchance/gcc-prebuilts nathanchance-prebuilt-arm

Die Umgebungsvariable fur den Cross-Kompiler wird dann wie folgt gesetzt:

CROSS COMPILE="$(pwd)/toolchain/nathanchance-prebuilt-arm/bin/arm-gnu-linux-
androideabi-"

Linaro ARM

Das Toolchain kann hier heruntergeladen werden.

Das heruntergeladene Archiv wird dann entpackt:

~$ tar xvfJ gcc-linaro-7.2.1-2017.11-x86 64 arm-linux-gnueabihf.tar.xz
gcc-linaro-7.2.1-2017.11-x86 64 arm-linux-gnueabihf/
gcc-linaro-7.2.1-2017.11-x86_64 arm-linux-gnueabihf/include/
gcc-linaro-7.2.1-2017.11-x86 64 arm-linux-gnueabihf/include/gdb/

gcc-linaro-7.2.1-2017.11-x86 64 arm-linux-gnueabihf/libexec/gcc/arm-1linux-
gnueabihf/7.2.1/install-tools/fixincl
gcc-linaro-7.2.1-2017.11-x86 64 arm-linux-gnueabihf/libexec/gcc/arm-1linux-
gnueabihf/7.2.1/install-tools/mkheaders
gcc-linaro-7.2.1-2017.11-x86 64 arm-linux-gnueabihf/gcc-
linaro-7.2.1-2017.11-linux-manifest.txt

Zur Vereinfachung wird das neu erstellte Verzeichnis noch umbenannt:

~$ mv -v gcc-linaro-7.2.1-2017.11-x86 64 arm-linux-gnueabihf linaro-arm
‘gcc-linaro-7.2.1-2017.11-x86 64 arm-linux-gnueabihf' -> 'linaro-arm'

Das Toolchain kann wie folgt getestet werden:

Linux4Ever - https://looper.de/wiki/

https://forum.xda-developers.com/android/development/toolchains-gnu-linaro-5th-2017-t3606941
https://releases.linaro.org/components/toolchain/binaries/latest/arm-linux-gnueabihf/

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

~$ cd linaro-arm/bin

~$ echo "main(){}" | ./arm-linux-gnueabihf-gcc -x c -

<stdin>:1:1: warning: return type defaults to ‘int’ [-Wimplicit-int]

~$ file a.out

a.out: ELF 32-bit LSB executable, ARM, EABI5 version 1 (SYSV), dynamically
linked, interpreter \

/lib/ld-linux-armhf.so0.3, for GNU/Linux 3.2.0,
BuildID[shal]=995639f16ef402f3cf87b3b2c59fedb3bOba8dbO, not stripped

~$ rm a.out

Die Umgebungsvariable flr den Cross-Kompiler wird dann wie folgt gesetzt:

CROSS COMPILE="$(pwd)/toolchain/linaro-arm/bin/arm-1linux-gnueabihf-"

UBER Toolchain

Dieses Toolchain kommt von xda-developers.com. Die fertigen Archive liegen auf bitbucket.org.

Das gewunschte Archiv wird heruntergeladen:
~$ wget

https://bitbucket.org/matthewdalex/arm-linux-androideabi-4.9/get/0ed6f4e24a6
2.zip

Im nachsten Schritt muss entpackt werden:

~$ unzip Oed6f4e24a62.zip && rm 0ed6fd4e24a62.zip

Zur Vereinfachung wird das neu erstellte Verzeichnis noch umbenannt:

~$ mv -v matthewdalex-arm-linux-androideabi-4.9-0ed6f4e24a62 ubertc-arm
'matthewdalex-arm-linux-androideabi-4.9-0ed6f4e24a62' -> 'ubertc-arm'

Die Umgebungsvariable fur den Cross-Kompiler wird dann wie folgt gesetzt:

CROSS COMPILE="$(pwd)/toolchain/ubertc-arm/bin/arm-1linux-androideabi-"

https://looper.de/wiki/ Printed on 2026/01/12 00:44

https://forum.xda-developers.com/android/software/toolchain-uber-toolchains-t3527997
https://bitbucket.org/matthewdalex/

2026/01/12 00:44 7/28 Kernelkompilation

Linaro AARCH64

Das Toolchain kann hier heruntergeladen werden. Es kann ausschlielSlich flr 64-Bit-Architekturen
verwendet werden.

Das heruntergeladene Archiv wird dann entpackt:

~$ tar xvfJ] gcc-linaro-5.5.0-2017.10-x86 64 aarch64-linux-gnu.tar.xz
gcc-linaro-5.5.0-2017.10-x86 64 aarch64-linux-gnu/
gcc-linaro-5.5.0-2017.10-x86 64 aarch64-linux-gnu/include/
gcc-linaro-5.5.0-2017.10-x86 64 aarch64-linux-gnu/include/gdb/

gcc-linaro-5.5.0-2017.10-x86 64 aarch64-1linux-gnu/aarch64-linux-
gnu/lib64/1libstdc++.50.6.0.21
gcc-linaro-5.5.0-2017.10-x86 64 aarch64-linux-gnu/aarch64-1linux-
gnu/1ib64/1libstdc++.a
gcc-linaro-5.5.0-2017.10-x86 64 aarch64-linux-gnu/aarch64-linux-
gnu/lib64/libasan preinit.o

Zur Vereinfachung wird das neu erstellte Verzeichnis noch umbenannt:

~$ mv -v gcc-linaro-5.5.0-2017.10-x86 64 aarch64-linux-gnu linaro-aarch64
'gcc-linaro-5.5.0-2017.10-x86 64 aarch64-linux-gnu' -> 'linaro-aarch64’

Das Toolchain kann wie folgt getestet werden:

~$ cd linaro-aarch64/bin

~$ echo "main(){}" | ./aarch64-linux-gnu-gcc -x c -

<stdin>:1:1: warning: return type defaults to ‘int’ [-Wimplicit-int]

~$ file a.out

a.out: ELF 64-bit LSB executable, ARM aarch64, version 1 (SYSV), dynamically
linked, interpreter \

/lib/1d-linux-aarch64.s0.1, for GNU/Linux 3.7.0,
BuildID[shal]=e3733727fdcae630f517bc32fe62aaflfa®074380, not stripped

~$ rm a.out

Die Umgebungsvariable fur den Cross-Kompiler wird dann wie folgt gesetzt:

CROSS COMPILE="$(pwd)/toolchain/linaro-aarch64/bin/aarch64-1linux-gnu-"

Linux4Ever - https://looper.de/wiki/

https://releases.linaro.org/components/toolchain/binaries/latest-5/aarch64-linux-gnu/

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

Architektur

Jetzt mUdsen noch die Variablen fir die Architektur gesetzt werden:

~$ export ARCH=arm
~$ export SUBARCH=arm

@ Hier muss bei Bedarf eine andere Architektur (zum Beispiel ,arm64*) verwendet
werden.

Kernelquelle

Der Kernel fur ein bereits angepasstes Gerat kann zum Beispiel von Github heruntergeladen werden.
Wichtig ist es hier, auf den richtigen Chipsatz des Gerates zu achten. Nachfolgend wird ein anderer
Kernel flr das Gerat Samsung Galaxy S5 (SM-G900F) gebaut, welches einen Qualcomm-Chipsatz

besitzt.

Im ersten Schritt wird das Repository auf den lokalen Rechner geklont:

~$ git clone -b cm-14.1
https://github.com/Lineage0S/android_kernel_samsung msm8974.git lineageos-

samsung-msm8974

Bauvorgang

Die Kernelkonfiguration ist im neu erstellten Verzeichnis ,1ineageos-samsung-msm8974/“ unter

.arch/arm/configs/“ zu finden, nachfolgend wird die Datei
~lineage klte bcm2079x _defconfig” genutzt. Auch diese muss zum eigenen Gerat und zu

Architektur passen.

Jetzt erfolgt der Wechsel in das neu erstellte Verzeichnis und das Bauen kann durchgeflihrt werden:

~$ cd lineageos-samsung-msm8974

~$ make clean
make completed successfully (2 seconds)

https://looper.de/wiki/ Printed on 2026/01/12 00:44

https://github.com/LineageOS/android_kernel_samsung_msm8974
https://github.com/LineageOS/android_kernel_samsung_msm8974.git

2026/01/12 00:44 9/28 Kernelkompilation

~$ make mrproper
make completed successfully (4 seconds)

~$ make lineage klte bcm2079x defconfig

HOSTCC scripts/basic/fixdep

HOSTCC scripts/kconfig/conf.o

SHIPPED scripts/kconfig/zconf.tab.c

SHIPPED scripts/kconfig/zconf.lex.c

SHIPPED scripts/kconfig/zconf.hash.c

HOSTCC scripts/kconfig/zconf.tab.o

HOSTLD scripts/kconfig/conf
sound/soc/codecs/audience/Kconfig:40:warning: type of 'SND SOC ES SLIM'
redefined from 'boolean' to 'tristate'’
sound/soc/codecs/audience/Kconfig:43:warning: type of 'SND SOC ES I2C'
redefined from 'boolean' to 'tristate'’
boolean symbol SND SOC MAX98506 tested for 'm'? test forced to 'n'
sound/soc/codecs/audience/Kconfig:44:warning: choice value used outside its
choice group
sound/soc/codecs/audience/Kconfig:41:warning: choice value used outside its
choice group
#
configuration written to .config
#

make completed successfully (2 seconds)

~$ make -s -j$(nproc --all)
sound/soc/codecs/audience/Kconfig:40:warning: type of 'SND SOC ES SLIM'
redefined from 'boolean' to 'tristate'’
sound/soc/codecs/audience/Kconfig:43:warning: type of 'SND SOC ES I2C'
redefined from 'boolean' to 'tristate'’

boolean symbol SND SOC MAX98506 tested for 'm'? test forced to 'n'

HMAC-SHA256 (builtime bytes.bin)=
183c03ebecd2d7d347bleacccfa290e85af99879e9193349e€96131e2810e8196
Kernel: arch/arm/boot/Image is ready
Kernel: arch/arm/boot/zImage is ready
Kernel: arch/arm/boot/zImage-dtb is ready

make completed successfully (19 seconds)

Fehlerbehandlung

Es kann vorkommen, dass die Kompilierung mit einer Fehlermeldung abbricht. Hier muss dann von
Fall zu Fall gepruft werden, welche Kerneleinstellungen geandert werden muissen. Nachfolgend
werden ein paar Beispiele gezeigt.

Linux4Ever - https://looper.de/wiki/

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

net/netfilter/xt_ TCPMSS.o

Die Kompilierung bricht mit folgender Meldung ab:

Generating include/generated/mach-types.h
make[2]: *** Keine Regel vorhanden, um das Ziel ,net/netfilter/xt TCPMSS.o“,
benétigt von ,net/netfilter/built-in.o", zu erstellen. Schluss.
make[2]: *** Es wird auf noch nicht beendete Prozesse gewartet...
scripts/Makefile.build:443: die Regel fir Ziel ,net/netfilter” scheiterte
make[1l]: *** [net/netfilter] Fehler 2
make[1l]: *** Es wird auf noch nicht beendete Prozesse gewartet...
Makefile:961: die Regel fur Ziel ,net” scheiterte
make: *** [net] Fehler 2

Aufruf der Kernelkonfiguration:

~$ make menuconfig

Hier dann ,Load an Alternate Configuration File"” auswahlen und folgendes eingeben:
arch/arm/configs/lineage klte bcm2079x defconfig

Hier muss dann unter Umstanden die selbst gewahlte Kernelkonfiguration eingetragen werden.

Dann zu folgenden Konfigurationspunkt wechseln:
e [*] Networking support —
o Networking options —>
= [*] Network packet filtering framework (Netfilter) —
e Core Netfilter Configuration —

o[] ,TCPMSS"” target support (den Stern hier bitte
rausnehmen)

Beim Beenden des Konfigurationsmenis muss die Datei gespeichert werden.

Flashen des Kernels

Nach einem erfolgreichen Bauvorgang entsteht die Kerneldatei namens ,,zImage*“.

Kernel: arch/arm/boot/zImage is ready

https://looper.de/wiki/ Printed on 2026/01/12 00:44

2026/01/12 00:44 11/28 Kernelkompilation

Damit diese Datei auf dem Telefon funktioniert, muss sie in das Boot-Image integriert werden
(,boot.img"). Die Boot-Image-Datei entsteht unter anderem als Nebenprodukt, wenn ein
angepasstes Image (zum Beispiel LineageOS) gebaut wird. Dem Author sind jetzt zwei Méglichkeiten
bekannt, das Kernel-Image in das Boot-Image zu integrieren, wobei auch nur eine funktioniert hat:
Android-Image-Kitchen.

Die Dateien kdnnen mit Hilfe von ,git” auf den lokalen Rechner geklont werden:

~$ git clone -b AIK-Linux
https://github.com/osmOsis/Android-Image-Kitchen.git

Die enthaltenen Skripte sind so erstellt wurden, dass alles innerhalb des neu erstellten Verzeichnisses
+~Android-Image-Kitchen" ablauft:

~$ cd Android-Image-Kitchen

Im ersten Schritt muss das Boot-Image entpackt werden:
~$./unpackimg.sh boot.img

Android Image Kitchen - UnpackImg Script
by osm@sis @ xda-developers

Supplied image: boot.img

Setting up work folders...

Image type: AOSP

Footer with "SEAndroid" type detected.

Splitting image to "split img/"...

BOARD KERNEL CMDLINE console=null androidboot.hardware=qcom user debug=31
msm_rtb.filter=0x37 ehci-hcd.park=3 \

zcache.enabled=1 zcache.compressor=1z4 androidboot.bootdevice=msm sdcc.1
buildvariant=userdebug

BOARD KERNEL BASE 00000000

BOARD NAME

BOARD PAGE SIZE 2048

BOARD HASH TYPE shal

BOARD KERNEL OFFSET 00008000

BOARD RAMDISK OFFSET 02000000

BOARD SECOND OFFSET 00f00000

BOARD TAGS OFFSET 01e00000

BOARD 0S VERSION 7.1.2

BOARD 0S PATCH LEVEL 2018-04

Linux4Ever - https://looper.de/wiki/

https://github.com/osm0sis/Android-Image-Kitchen/tree/AIK-Linux

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

BOARD DT SIZE 1843200
Unpacking ramdisk (as root) to "ramdisk/"...

Compression used: gzip
5851 blocks

Done!

Es wurden zwei neue Verzeichnisse ,ramdisk” und ,split img"“ angelegt. Im zweiten befindet sich

unser Kernel-Image, welches ausgetauscht werden soll:

~$ cp -v zImage split img/boot.img-zImage
‘zImage' -> 'split img/boot.img-zImage'

Im letzten Schritt muss das ,neue” Boot-Image wieder zusammengebaut werden:
~$./repackimg.sh

Android Image Kitchen - RepackImg Script
by osmOsis @ xda-developers

Packing ramdisk (as root)...
Using compression: gzip
Getting build information...
kernel = boot.img-zImage

cmdline = console=null androidboot.hardware=qcom user debug=31
msm_rtb.filter=0x37 ehci-hcd.park=3 \

zcache.enabled=1 zcache.compressor=1z4 androidboot.bootdevice=msm sdcc.1

buildvariant=userdebug
board =

base = 00000000

pagesize = 2048

kernel offset = 00008000
ramdisk offset = 02000000
second offset = 00f00000
tags offset = 01e00000
os _version = 7.1.2
os_patch level = 2018-04
hash = shal

dtb = boot.img-dtb

Building image. ..

Using format: AOSP

https://looper.de/wiki/ Printed on 2026/01/12 00:44

2026/01/12 00:44 13/28

Kernelkompilation
Appending footer...

Using type: SEAndroid

Done!

Als Ergebnis wird die Datei ,image-new.img" erstellt, welche auf das Telefon kopiert und dort (zum
Beispiel mit Hilfe vom TWRP) installiert werden kann.

Bauversuche SM-G900F

Nachfolgend sollen Bauversuche von Kompilierungen des Kernels fur das Samsung Galaxy S5 (SM-
G900F) beschrieben werden.

OK: CyanogenMod

Der Kernel kann von der Seite github.com heruntergeladen werden und kann flr ein angepasstes
Image verwendet werden.

Download

Der Download der Quellen mit ,git*“:

~$ git clone -b cm-14.1

https://github.com/CyanogenMod/android kernel samsung klte.git
github cyanogenmod android-kernel-samsung-klte

Toolchain

Verlinken der Toolchain:

~$ cd github _cyanogenmod android-kernel-samsung-klte
~$ ln -sf ../toolchain toolchain

Linux4Ever - https://looper.de/wiki/

https://github.com/CyanogenMod/android_kernel_samsung_klte

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

Bauskript

Bevor das Bauen des Kernel mit Hilfe des mitgelieferten Skriptes ,build kernel.sh* gestartet
werden kann, muss dieses noch angepasst werden:

export CROSS COMPILE=$(pwd)/toolchain/arm-linux-androideabi-4.9/bin/arm-
linux-androideabi-
mkdir -p output

if [-e output/arch/arm/boot/Image]; then
cp output/arch/arm/boot/Image $(pwd)/arch/arm/boot/zImage
fi;

Jetzt kann das Skript ausgefuhrt werden:

~$ bash ./build kernel.sh
make: Verzeichnis , /data/AndroidKernelBuild/github cyanogenmod android-
kernel-samsung-klte“ wird betreten

HOSTCC scripts/basic/fixdep

GEN /data/AndroidKernelBuild/github cyanogenmod android-kernel-
samsung-klte/output/Makefile

HOSTCC scripts/kconfig/conf.o

make: Verzeichnis ,/data/AndroidKernelBuild/github cyanogenmod android-
kernel-samsung-klte“ wird verlassen
make: Verzeichnis ,/data/AndroidKernelBuild/github cyanogenmod android-
kernel-samsung-klte“ wird betreten

GEN /data/AndroidKernelBuild/github cyanogenmod android-kernel-
samsung-klte/output/Makefile
scripts/kconfig/conf --silentoldconfig Kconfig

HMAC-SHA256 (builtime bytes.bin)=
6f415adf8cad4294d36522ca6d1db222bf8e0ec9db6006c60244cad843bed45cc
0BJCOPY arch/arm/boot/Image
Kernel: arch/arm/boot/Image is ready

AS arch/arm/boot/compressed/head.o
XZKERN arch/arm/boot/compressed/piggy.xzkern
cC arch/arm/boot/compressed/misc.o

CcC arch/arm/boot/compressed/decompress.o
CcC arch/arm/boot/compressed/string.o

SHIPPED arch/arm/boot/compressed/liblfuncs.S
SHIPPED arch/arm/boot/compressed/ashldi3.S

AS arch/arm/boot/compressed/liblfuncs.o

AS arch/arm/boot/compressed/ashldi3.o

AS arch/arm/boot/compressed/piggy.xzkern.o
LD arch/arm/boot/compressed/vmlinux

0BJCOPY arch/arm/boot/zImage
Kernel: arch/arm/boot/zImage is ready

https://looper.de/wiki/ Printed on 2026/01/12 00:44

2026/01/12 00:44 15/28 Kernelkompilation

CAT arch/arm/boot/zImage-dtb

Kernel: arch/arm/boot/zImage-dtb is ready
make: Verzeichnis ,/data/AndroidKernelBuild/github cyanogenmod android-
kernel-samsung-klte” wird verlassen

Manueller Bauversuch

Vor dem erneuten Bauen sollten die Altlasten aufgeraumt werden:

~$ make clean && make mrproper

Jetzt der manuelle Bauversuch:

~$ make msm8974 sec defconfig
VARIANT DEFCONFIG=msm8974pro sec klte eur defconfig
SELINUX DEFCONFIG=selinux defconfig

HOSTCC scripts/basic/fixdep

HOSTCC scripts/kconfig/conf.o

SHIPPED scripts/kconfig/zconf.tab.c

arch/arm/configs/msm8974pro sec klte eur defconfig:213:warning: override:
reassigning to symbol NET SCHED
arch/arm/configs/msm8974pro _sec klte eur defconfig:216:warning: override:
reassigning to symbol NET CLS ACT
arch/arm/configs/msm8974pro sec klte eur defconfig:218:warning: override:
reassigning to symbol NET EMATCH

KCONFIG DEBUG((null))

#

configuration written to .config

#

~$ make -j$(nproc --all)

Fehler "smd_init_dt.c"

CcC kernel/sysctl binary.o
CcC mm/fadvise.o
arch/arm/mach-msm/smd _init dt.c:24:25: fatal error: smd private.h: No such
file or directory
#include <smd private.h>
compilation terminated.
scripts/Makefile.build:307: die Regel fir Ziel ,arch/arm/mach-

Linux4Ever - https://looper.de/wiki/

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

msm/smd_init dt.o" scheiterte
make[1]: *** [arch/arm/mach-msm/smd init dt.o] Fehler 1
make[1l]: *** Es wird auf noch nicht beendete Prozesse gewartet...

CC mm/maccess.o
cC ipc/msgutil.o

Eine Recherche im Internet ergibt, dass in der Datei ,arch/arm/mach-msm/smd init dt.c" die
Zeile 24: #include <smd private.h>"in ,#include "smd private.h"" geandert werden

muss.

Fehler "rtac.c"

CcC fs/f2fs/node.o

LD drivers/clk/built-in.o
sound/soc/msm/qdsp6v2/rtac.c:29:21: fatal error: q6voice.h: No such file or
directory

#include <qg6voice.h>

compilation terminated.

scripts/Makefile.build:307: die Regel fir Ziel

»sound/soc/msm/qdsp6bv2/rtac.o” scheiterte

make[4]: *** [sound/soc/msm/qdsp6v2/rtac.o] Fehler 1

make[4]: *** Es wird auf noch nicht beendete Prozesse gewartet...
LD drivers/clocksource/built-in.o
CcC drivers/cpufreqg/cpufreqg.o

u

Die Reparatur ist ahnlich des vorherigen Fehlers. In der Datei ,sound/soc/msm/qdsp6v2/rtac.c
die Zeile 29: ,#include <g6voice.h>"in ,#include "q6voice.h"“ andern.

Fehler "mdss_mdp_trace.h"

LD drivers/usb/core/built-in.o
CcC drivers/usb/gadget/udc-core.o
In file included from drivers/video/msm/mdss/mdss mdp trace.h:255:0,
from drivers/video/msm/mdss/mdss mdp.c:61:
include/trace/define trace.h:79:43: fatal error: ./mdss mdp trace.h: No such

file or directory
#include TRACE INCLUDE(TRACE INCLUDE FILE)

N

compilation terminated.
scripts/Makefile.build:307: die Regel fur Ziel

https://looper.de/wiki/ Printed on 2026/01/12 00:44

2026/01/12 00:44 17/28 Kernelkompilation

n,drivers/video/msm/mdss/mdss mdp.o“ scheiterte
make[4]: *** [drivers/video/msm/mdss/mdss mdp.o] Fehler 1
scripts/Makefile.build:443: die Regel fur Ziel ,drivers/video/msm/mdss*“
scheiterte
make[3]: *** [drivers/video/msm/mdss] Fehler 2
scripts/Makefile.build:443: die Regel fur Ziel ,drivers/video/msm“
scheiterte
make[2]: *** [drivers/video/msm] Fehler 2
scripts/Makefile.build:443: die Regel fir Ziel ,drivers/video” scheiterte
make[1l]: *** [drivers/video] Fehler 2
make[1l]: *** Es wird auf noch nicht beendete Prozesse gewartet...

cC drivers/usb/gadget/android.o

CC net/ipv4/netfilter/nf nat ftp.o

Hier wird die Datei ,drivers/video/msm/mdss/mdss mdp trace.h” im Verzeichnis
»,include/trace/" von der Datei ,define trace.h” gesucht. Damit dies funktioniert, kann eine

symbolische Verknupfung erstellt werden:

~$ cd include/trace/
~$ In -s ../../drivers/video/msm/mdss/mdss mdp trace.h

~$ cd -

Fehler "mdss_mdp.h"

CC drivers/usb/dwc3/debugfs.o
CC drivers/usb/dwc3/dwc3-msm.o
In file included from include/trace/define trace.h:79:0,
from drivers/video/msm/mdss/mdss mdp trace.h:255,
from drivers/video/msm/mdss/mdss mdp.c:61:
include/trace/./mdss mdp trace.h:25:22: fatal error: mdss mdp.h: No such
file or directory
#include "mdss mdp.h"
compilation terminated.
scripts/Makefile.build:307: die Regel fir Ziel
ndrivers/video/msm/mdss/mdss mdp.o“ scheiterte
make[4]: *** [drivers/video/msm/mdss/mdss mdp.o] Fehler 1
make[4]: *** Es wird auf noch nicht beendete Prozesse gewartet...
CcC drivers/usb/gadget/udc-core.o
CcC drivers/usb/gadget/android.o

Dieser Fehler ist wieder ahnlich dem vorherigen Fehler. eine symbolische Verknlpfung der Datei
../drivers/video/msm/mdss/mdss _mdp.h" schafft Abhilfe:

Linux4Ever - https://looper.de/wiki/

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

~$ cd include/trace/
~$ ln -s ../../drivers/video/msm/mdss/mdss mdp.h
~$ cd -

Jetzt kann der Kernel erfolgreich gebaut werden:

HMAC-SHA256 (builtime bytes.bin)=
98871c7ee747591b987d4bllec74fdfc316elabfel59a2dabe85c6ae958a3c87
0BJCOPY arch/arm/boot/Image
Kernel: arch/arm/boot/Image is ready

AS arch/arm/boot/compressed/head.o
XZKERN arch/arm/boot/compressed/piggy.xzkern
cC arch/arm/boot/compressed/misc.o

cC arch/arm/boot/compressed/decompress.o
CC arch/arm/boot/compressed/string.o

SHIPPED arch/arm/boot/compressed/liblfuncs.S
SHIPPED arch/arm/boot/compressed/ashldi3.S

AS arch/arm/boot/compressed/liblfuncs.o

AS arch/arm/boot/compressed/ashldi3.o

AS arch/arm/boot/compressed/piggy.xzkern.o
LD arch/arm/boot/compressed/vmlinux

0BJCOPY arch/arm/boot/zImage

Kernel: arch/arm/boot/zImage is ready

CAT arch/arm/boot/zImage-dtb

Kernel: arch/arm/boot/zImage-dtb is ready

FEHLER: Boeffla-Venom-Kernel

Der Kernel wurde auf der Seite von xda-developers.com gefunden. Die Quellen befinden sich auf der
Seite von github.com.

Download

Der Download der Quellen mit ,git*“:

~$ git clone -b cm-14.1
https://github.com/TheSkaterl87/android kernel samsung msm8974
github theskater187 android-kernel-samsung-klte

https://looper.de/wiki/ Printed on 2026/01/12 00:44

https://forum.xda-developers.com/galaxy-s5/orig-development/kernel-genocide-venom-kernel-12-02-16-t3512403
https://github.com/TheSkater187

2026/01/12 00:44 19/28 Kernelkompilation

Toolchain

Verlinken der Toolchain:

~$ cd github_theskaterl187 android-kernel-samsung-klte
~$ ln -sf ../toolchain toolchain

Bauskript

Damit die Toolchain gefunden wird, muss das Skript ,build kernel.sh” angepasst werden:

export CROSS COMPILE=$(pwd)/toolchain/arm-linux-androideabi-4.9/bin/arm-
linux-androideabi-
mkdir -p output

if [-e output/arch/arm/boot/Image]; then
cp output/arch/arm/boot/Image $(pwd)/arch/arm/boot/zImage
fi;

Jetzt kann das Skript ausgeflhrt werden:

~$ bash ./build kernel.sh
make: Verzeichnis ,/data/AndroidKernelBuild/github theskater187 android-
kernel-samsung-klte“ wird betreten

HOSTCC scripts/basic/fixdep

GEN /data/AndroidKernelBuild/github theskaterl87 android-kernel-
samsung-klte/output/Makefile

HOSTCC scripts/kconfig/conf.o

arch/arm/mach-msm/built-in.o:msm8974-thermistor.c:function msm8974 init:
error: undefined reference to 'msm 8974 init gpiomux'
arch/arm/mach-msm/built-in.o:msm8974-thermistor.c:function pil boot: error:
undefined reference to 'poweroff charging'
arch/arm/mach-msm/built-in.o:msm8974-thermistor.c:function msm_restart:
error: undefined reference to 'poweroff charging'
drivers/built-in.0:51i8240.c:function of sii8240 probe dt: error: undefined
reference to 'acc register notifier'
/data/AndroidKernelBuild/github theskaterl87 android-kernel-samsung-
klte/Makefile:889: die Regel fur Ziel ,,.tmp vmlinux1l“ scheiterte

make[1]: *** [.tmp vmlinuxl] Fehler 1

Makefile:130: die Regel fur Ziel ,sub-make” scheiterte

make: *** [sub-make] Fehler 2

make: Verzeichnis ,/data/AndroidKernelBuild/github theskater187 android-
kernel-samsung-klte” wird verlassen

Linux4Ever - https://looper.de/wiki/

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

LO] Bisher wurde flr diesen Fehler noch keine Losung gefunden.

Manueller Bauversuch

Vor dem erneuten Bauen sollten die Altlasten aufgeraumt werden:

~$ make clean && make mrproper

Jetzt der manuelle Bauversuch:

make msm8974 sec defconfig
VARIANT DEFCONFIG=msm8974pro sec klte eur defconfig
SELINUX DEFCONFIG=selinux defconfig

HOSTCC scripts/basic/fixdep

HOSTCC scripts/kconfig/conf.o

SHIPPED scripts/kconfig/zconf.tab.c

arch/arm/configs/msm8974 sec defconfig:434:warning: override:

symbol HID ELECOM

arch/arm/configs/msm8974 sec defconfig:612:warning: override:

symbol KEYS

#

configuration written to .config
#

~$ make -j$(nproc --all)

LO] Es tritt der gleiche Fehler auf.

OK: CrazySuperKernel

Der Kernel wurde auf der Seite von github.com gefunden.

reassigning to

reassigning to

https://looper.de/wiki/

Printed on 2026/01/12 00:44

https://github.com/TheSkater187

2026/01/12 00:44 21/28 Kernelkompilation

Download

Der Download der Quellen mit ,git*“:

~$ git clone
https://github.com/TheSkaterl87/CrazySuperKernel-CM14.1-KLTE-New-rebase.git
github theskaterl87 crazysuperkernel

Toolchain

Verlinken der Toolchain:

~$ cd github_theskaterl87 crazysuperkernel
~$ ln -sf ../toolchain toolchain

Bauskript

Damit die Toolchain gefunden wird, muss das Skript ,build kernel.sh” angepasst werden:

export CROSS COMPILE=$(pwd)/toolchain/arm-linux-androideabi-4.9/bin/arm-
linux-androideabi-
mkdir -p output

if [-e output/arch/arm/boot/Image]1; then
cp output/arch/arm/boot/Image $(pwd)/arch/arm/boot/zImage
fi;

Jetzt kann das Skript ausgeflhrt werden:

make: Verzeichnis
»/data/AndroidKernelBuild/github theskaterl187 crazysuperkernel” wird
betreten

HOSTCC scripts/basic/fixdep

GEN
/data/AndroidKernelBuild/github theskaterl87 crazysuperkernel/output/Makefil
e

HOSTCC scripts/kconfig/conf.o

SHIPPED scripts/kconfig/zconf.tab.c

make: Verzeichnis
»/data/AndroidKernelBuild/github theskaterl87 crazysuperkernel” wird
verlassen

Linux4Ever - https://looper.de/wiki/

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

make: Verzeichnis
»/data/AndroidKernelBuild/github theskaterl87 crazysuperkernel” wird
betreten

GEN

/data/AndroidKernelBuild/github theskaterl87 crazysuperkernel/output/Makefil
e

scripts/kconfig/conf --silentoldconfig Kconfig

DTC arch/arm/boot/msm8974pro-ac-sec-k-rl4.dtb

CAT arch/arm/boot/zImage-dtb

Kernel: arch/arm/boot/zImage-dtb is ready
make[2]: Fir das Ziel ,arch/arm/boot/dtbs“ ist nichts zu tun.
make: Verzeichnis

»/data/AndroidKernelBuild/github theskaterl187 crazysuperkernel” wird
verlassen

OK: Boeffla-Kernel

Der Kernel wurde auf der Seite von xda-developers.com gefunden. Die Quellen befinden sich auf
github.com.

Download

Der Download der Quellen mit ,git“:

~$ git clone -b boeffla cml4
https://github.com/andip71/boeffla-kernel-cm-s5.git github andip71 boeffla-
cml4-s5

Toolchain

Verlinken der Toolchain:

~$ cd github _andip71 boeffla-cml4-s5
~$ ln -sf ../toolchain toolchain

bbuild-anykernel.sh

https://looper.de/wiki/ Printed on 2026/01/12 00:44

https://forum.xda-developers.com/galaxy-s5/orig-development/kernel-boeffla-kernel-1-0-beta1-23-03-t3062073
https://github.com/andip71

2026/01/12 00:44 23/28 Kernelkompilation

Anpassen des Skriptes ,bbuild-anykernel.sh":

TOOLCHAIN="$(pwd)/toolchain/google-ndk/bin/arm-linux-androideabi-"

Erstellen des Bauverzeichnisses:

~$./bbuild-anykernel.sh 0
0 - copy code

Bereinigen:

~$./bbuild-anykernel.sh 1
1 - make clean

Konfiguration erstellen:

~$./bbuild-anykernel.sh 2
2 - make config

Makestring: O=output arch=arm boeffla defconfig
VARIANT DEFCONFIG=boeffla defconfig variant
HOSTCC scripts/basic/fixdep
GEN /data/AndroidKernelBuild/build/output/Makefile

sound/soc/codecs/audience/Kconfig:41:warning: choice value used outside its
choice group

#

configuration written to .config

#

Kompilieren des Kernels:

~$./bbuild-anykernel.sh 3
3 - compile

GEN /data/AndroidKernelBuild/build/output/Makefile
scripts/kconfig/conf --silentoldconfig Kconfig
sound/soc/codecs/audience/Kconfig:40:warning: type of 'SND SOC ES SLIM'
redefined from 'boolean' to 'tristate'’
sound/soc/codecs/audience/Kconfig:43:warning: type of 'SND SOC ES I2C'
redefined from 'boolean' to 'tristate'’

chipset: 3255369473, rev: 65536, platform: 5, subtype: 0
=> Found 7 unique DTB(s)

Linux4Ever - https://looper.de/wiki/

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

Generating master DTB... completed
compile time: 168 seconds

Kernel image size (bytes):

6486856

Kernel vorbereiten:

~$./bbuild-anykernel.sh 4
4 - prepare anykernel
>>> cleanup repack folder

'/data/AndroidKernelBuild/build/output/net/sunrpc/sunrpc.ko' ->
'/data/AndroidKernelBuild/repack/modules/sunrpc.ko’
‘/data/AndroidKernelBuild/build/output/net/sunrpc/auth gss/auth rpcgss.ko'
-> '/data/AndroidKernelBuild/repack/modules/auth rpcgss.ko'
'/data/AndroidKernelBuild/build/output/drivers/input/joystick/xpad.ko' ->
'/data/AndroidKernelBuild/repack/modules/xpad. ko'

'/data/AndroidKernelBuild/build/output/fs/nfs/nfs.ko' ->
'/data/AndroidKernelBuild/repack/modules/nfs.ko'

'/data/AndroidKernelBuild/build/output/fs/ntfs/ntfs.ko' ->
'/data/AndroidKernelBuild/repack/modules/ntfs.ko'>>> strip modules

Kernel erstellen:

~$./bbuild-anykernel.sh 5

5 - create anykernel zip

>>> create flashable zip
adding: anykernel.sh (deflated 54%)
adding: dtb (deflated 81%)
adding: META-INF/ (stored 0%)

adding: tools/busybox (deflated 37%)
adding: zImage (deflated 0%)>>> create load&flash files

Die fertigen Dateien liegen eine Verzeichnisebene hoéher in ,build/“ und ,repack/"“.

build_kernel.sh

Anpassen des Skriptes ,build kernel.sh*:

https://looper.de/wiki/ Printed on 2026/01/12 00:44

2026/01/12 00:44 25/28 Kernelkompilation

export CROSS COMPILE="$(pwd)/toolchain/arm-linux-androideabi-4.9/bin/arm-
linux-androideabi-"

Als nachstes wurden alle Kernelparameter aus der Datei
../arch/arm/configs/boeffla defconfig”, die nicht in der Datei
../arch/arm/configs/msm8974 sec defconfig” enthalten sind, in dieser hinzugefugt. Welche
Parameter das sind, kann in dieser Datei nachgelesen werden.

Kernel bauen:

~$ bash ./build kernel.sh
make: Verzeichnis ,/data/AndroidKernelBuild/github _andip71 boeffla-cml4-s5“
wird betreten

HOSTCC scripts/basic/fixdep

GEN /data/AndroidKernelBuild/github andip71 boeffla-cml4-
s5/output/Makefile

HOSTCC scripts/kconfig/conf.o

0BJCOPY arch/arm/boot/zImage

Kernel: arch/arm/boot/zImage is ready

CAT arch/arm/boot/zImage-dtb

Kernel: arch/arm/boot/zImage-dtb is ready
make: Verzeichnis ,/data/AndroidKernelBuild/github _andip71 boeffla-cml4-s5“
wird verlassen
‘output/arch/arm/boot/Image' ->
'/data/AndroidKernelBuild/github andip71 boeffla-cml4-
s5/arch/arm/boot/zImage’

Manuelles Bauen

Kopieren der Datei ,,./arch/arm/configs/msm8974 sec defconfig” zu einer eigenen Datei
../arch/arm/configs/meine-samsung-konfiguration defconfig*“:

~$ cp -v ./arch/arm/configs/msm8974 sec defconfig ./arch/arm/configs/meine-
samsung-konfiguration defconfig

‘./arch/arm/configs/msm8974 sec defconfig' -> './arch/arm/configs/meine-
samsung-konfiguration defconfig'

Erganzen aller fehlenden Kernelparameter aus der Datei
../arch/arm/configs/boeffla defconfig”, die nicht in der Datei
../arch/arm/configs/meine-samsung-konfiguration defconfig” vorhanden sind. Welche
Parameter das sind, kann in dieser Datei nachgelesen werden. Die verwendete Konfigurationsdatei

Linux4Ever - https://looper.de/wiki/

https://looper.de/wiki/lib/exe/fetch.php?media=android:boeffla-kernel_msm8974-boeffla-defconfig.txt
https://looper.de/wiki/lib/exe/fetch.php?media=android:boeffla-kernel_msm8974-boeffla-defconfig.txt

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

.meine-samsung-konfiguration defconfig” ist hier zu finden.

Bereinigen des Baumes:

~$ make clean && make mrproper

Erstellen der Konfiguration:

~$ make meine-samsung-konfiguration defconfig

HOSTCC scripts/basic/fixdep

HOSTCC scripts/kconfig/conf.o

SHIPPED scripts/kconfig/zconf.tab.c

SHIPPED scripts/kconfig/zconf.lex.c

SHIPPED scripts/kconfig/zconf.hash.c

HOSTCC scripts/kconfig/zconf.tab.o

HOSTLD scripts/kconfig/conf
sound/soc/codecs/audience/Kconfig:40:warning: type of 'SND SOC ES SLIM'
redefined from 'boolean' to 'tristate'
sound/soc/codecs/audience/Kconfig:43:warning: type of 'SND SOC ES I2C'
redefined from 'boolean' to 'tristate'’
boolean symbol SND SOC MAX98506 tested for 'm'? test forced to 'n'
sound/soc/codecs/audience/Kconfig:44:warning: choice value used outside its
choice group
sound/soc/codecs/audience/Kconfig:41:warning: choice value used outside its
choice group
arch/arm/configs/bornis defconfig:866:warning: override: reassigning to
symbol RCU FAST NO HZ
arch/arm/configs/bornis defconfig:867:warning: override: reassigning to
symbol IKCONFIG
arch/arm/configs/bornis defconfig:868:warning: override: reassigning to
symbol IKCONFIG PROC
arch/arm/configs/bornis defconfig:899:warning: override: reassigning to
symbol MODULES
arch/arm/configs/bornis defconfig:900:warning: override: reassigning to
symbol MODULE_UNLOAD
arch/arm/configs/bornis defconfig:901:warning: override: reassigning to
symbol MODULE FORCE_UNLOAD
arch/arm/configs/bornis defconfig:1175:warning: override: reassigning to
symbol JOYSTICK XPAD
arch/arm/configs/bornis defconfig:1295:warning: override: reassigning to
symbol HID ELECOM
arch/arm/configs/bornis defconfig:1473:warning: override: reassigning to
symbol KEYS
#
configuration written to .config
#

https://looper.de/wiki/ Printed on 2026/01/12 00:44

https://looper.de/wiki/lib/exe/fetch.php?media=android:meine-samsung-konfiguration_defconfig

2026/01/12 00:44 27/28 Kernelkompilation

Erstellen des Kernels:

~$ make -j$(nproc --all)
scripts/kconfig/conf --silentoldconfig Kconfig
sound/soc/codecs/audience/Kconfig:40:warning: type of 'SND SOC ES SLIM'
redefined from 'boolean' to 'tristate'
sound/soc/codecs/audience/Kconfig:43:warning: type of 'SND SOC ES I2C'
redefined from 'boolean' to 'tristate'’
boolean symbol SND SOC MAX98506 tested for 'm'? test forced to 'n'
sound/soc/codecs/audience/Kconfig:44:warning: choice value used outside its
choice group
sound/soc/codecs/audience/Kconfig:41:warning: choice value used outside its
choice group

WRAP arch/arm/include/generated/asm/auxvec.h

WRAP arch/arm/include/generated/asm/bitsperlong.h

WRAP arch/arm/include/generated/asm/cputime.h

AS arch/arm/boot/compressed/ashldi3.o

AS arch/arm/boot/compressed/piggy.xzkern.o
LD arch/arm/boot/compressed/vmlinux

O0BJCOPY arch/arm/boot/zImage

Kernel: arch/arm/boot/zImage is ready
CAT arch/arm/boot/zImage-dtb

Kernel: arch/arm/boot/zImage-dtb is ready

Weitere Funde

Es gibt im Internet noch verschiedene andere Kernel zu finden, die bisher nicht weiter getestet
wurden:

e https://www.android-hilfe.de/forum/aosp-aokp-basierende-custom-roms-fuer-samsung-galaxy-s5
2028/

e https://android-hubo.de/thread/5730-smartpack-kernel-g900f-lineageos-cm14-1-samsung-galax

y-s5/

https://github.com/gsstudios/LOS-plus-kernel

https://github.com/bemerguy/tuned-kernel-LOS-s5

https://sunilpaulmathew.github.io/downloads/

https://github.com/friedrich420/S5-G900F-AEL-Kernel-LOLLIPOP

xda-developers.com (Stock-Kernel)

— Steffen Bornemann 15.06.2018

CHROOT, DEBIAN, Google, NDK, Toolchain, ARM, Kernel, Flash, SM-G900F, CyanogenMod

Linux4Ever - https://looper.de/wiki/

https://www.android-hilfe.de/forum/aosp-aokp-basierende-custom-roms-fuer-samsung-galaxy-s5.2028/
https://www.android-hilfe.de/forum/aosp-aokp-basierende-custom-roms-fuer-samsung-galaxy-s5.2028/
https://android-hubo.de/thread/5730-smartpack-kernel-g900f-lineageos-cm14-1-samsung-galaxy-s5/
https://android-hubo.de/thread/5730-smartpack-kernel-g900f-lineageos-cm14-1-samsung-galaxy-s5/
https://github.com/gsstudios/LOS-plus-kernel
https://github.com/bemerguy/tuned-kernel-LOS-s5
https://sunilpaulmathew.github.io/downloads/
https://github.com/friedrich420/S5-G900F-AEL-Kernel-LOLLIPOP
https://forum.xda-developers.com/galaxy-s5/development/kernel-smartpack-project-stock-t3568810
mailto:steffen.bornemann@gmx.de
https://looper.de/wiki/doku.php?id=tag:chroot&do=showtag&tag=CHROOT
https://looper.de/wiki/doku.php?id=tag:debian&do=showtag&tag=DEBIAN
https://looper.de/wiki/doku.php?id=tag:google&do=showtag&tag=Google
https://looper.de/wiki/doku.php?id=tag:ndk&do=showtag&tag=NDK
https://looper.de/wiki/doku.php?id=tag:toolchain&do=showtag&tag=Toolchain
https://looper.de/wiki/doku.php?id=tag:arm&do=showtag&tag=ARM
https://looper.de/wiki/doku.php?id=tag:kernel&do=showtag&tag=Kernel
https://looper.de/wiki/doku.php?id=tag:flash&do=showtag&tag=Flash
https://looper.de/wiki/doku.php?id=tag:sm-g900f&do=showtag&tag=SM-G900F
https://looper.de/wiki/doku.php?id=tag:cyanogenmod&do=showtag&tag=CyanogenMod

Last update: 2025/12/11 15:00 android:build-custom-rom-kernel https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

From:
https://looper.de/wiki/ - Linux4Ever

Permanent link:
https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

Last update: 2025/12/11 15:00

https://looper.de/wiki/ Printed on 2026/01/12 00:44

https://looper.de/wiki/
https://looper.de/wiki/doku.php?id=android:build-custom-rom-kernel

	Kernelkompilation
	Nützliche Webseiten
	Voraussetzungen
	Toolchain
	DEBIAN-Pakete
	Google NDK
	Google Prebuilts
	GNU Arm Embedded Toolchain
	Nathanchance Prebuilt ARM
	Linaro ARM
	UBER Toolchain
	Linaro AARCH64

	Architektur
	Kernelquelle
	Bauvorgang
	Fehlerbehandlung
	net/netfilter/xt_TCPMSS.o

	Flashen des Kernels
	Bauversuche SM-G900F
	OK: CyanogenMod
	Download
	Toolchain
	Bauskript
	Manueller Bauversuch
	Fehler "smd_init_dt.c"
	Fehler "rtac.c"
	Fehler "mdss_mdp_trace.h"
	Fehler "mdss_mdp.h"

	FEHLER: Boeffla-Venom-Kernel
	Download
	Toolchain
	Bauskript
	Manueller Bauversuch

	OK: CrazySuperKernel
	Download
	Toolchain
	Bauskript

	OK: Boeffla-Kernel
	Download
	Toolchain
	bbuild-anykernel.sh
	build_kernel.sh
	Manuelles Bauen

	Weitere Funde

